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Physical context: inertial confinement fusion

from wikipedia:

Inertial confinement fusion is a type of fusion energy research that
attempts to initiate nuclear fusion reactions by heating and compressing a
fuel target, typically in the form of a pellet that most often contains a
mixture of deuterium and tritium. Typical fuel pellets are about the size of
a pinhead. To compress and heat the fuel, energy is delivered to the outer
layer of the target using high-energy beams of laser light.

Photo: LLNL, 1984, source: wikipedia



Physical context: inertial confinement fusion
from wikipedia:
Throughout the 1980s and '90s, many experiments were conducted in
order to understand the complex interaction of high-intensity laser light
and plasma. These led to the design of newer machines, much larger, that
would finally reach ignition energies.
o LLNL, USA
o LMJ, CEA, Bordeaux
from the CEA webpage: “trés grand instrument ... mis en service en
2014”

@ Institute for Laser engineering, Osaka



Physical context: inertial confinement fusion
@ Huge equipments, but...

@ experiments are not satisfactory:
“Laser-plasma instabilities inhibit the deposition of energy ... [New
broad-bandwith lasers could potentially] suppress high-frequency
instabilities like [...] stimulated Rdman scattering”
White paper on opportunities in plasma physics, 2019.

@ Raman effect: predicted by Smekal in 1923, observed by Rdman and
Krishnan (and Mandelstam, independently) in 1928.



Plan:

o the framework: Euler-Maxwell and 3 scales geometric optics

starting from spectral properties: the linearized equations around 0
@ validation of the instability for the nonlinear system
@ three viewpoints on resonances and space-time resonances

@ the symbolic flow approach to the spectral instability problem



General mathematical context:

@ quasi-linear or semi-linear hyperbolic systems depending on small
(large) parameters

e highly-oscillating data ( “geometric optics”)

@ References: Lax, Keller, Hunter, Majda, Rosales, Newell, Moloney,
Joly, Métivier, Rauch, Gues, Colin, Lannes, Williams, Coulombel. ..



Specific mathematical context:

@ Geometric optics.
Highly-oscillatory solutions to hyperbolic systems.

Supercritical geometric optics: [Joly-Métivier-Rauch, 2000]
~ long time compatibility/ “null forms” conditions

bearing on nonlinearities, at resonances
@ Laser-plasma interactions.

Euler (fluid) - Maxwell (electromagnetic waves).

[Germain'MasmOUdi' 2014] global existence results

[Guo—Pausader—Ionescu, 2016] based on analysis of space-time resonances



Theorem. Two-fluid Euler-Maxwell with small parameter ¢ > 0 :
@ there exists approximate solutions uj,
@ there exists exact solutions u,
such that
° H(u — Ua)\t:OH =X K > 0 arbitrarily large,
o ||(u— ua)je—o(yzmepll = K" K’ > 0 arbitrarily small.

|| - ||: pointwise (L>°) or weighted Sobolev (HZ) initially.
I - || : pointwise at final observation time.
¢ : wavelength of incident light.

This theorem: a justification of high-frequency Raman instabilities for
laser-plasma interactions.



Instability of an ansatz.

The ansatz:

= Y PerloeEy, <tx\2>

0<j<K,
PEH;
where u,; , is independent of ¢, Kj is large, H; C Z is finite.
The wavenumber k is given and the frequency w is to be determined.
We show that this ansatz is
@ consistent: leads to a well-posed system of equations,

some compatibility conditions/null forms do hold

@ unstable: in the sense of the theorem.
some compatibility conditions/null forms do NOT hold



Ansatz: u, = ZEJ/2eip(k‘X7wt)/Euatj_p (t,x, é) .

Leading profile: wu,,0,+1; first corrector: s 1,0, ...

Jp

The Zakharov system.

Components of the leading profile and first corrector satisfy

(Z)

i(0f + c(k)Ox)E — AyE =nE,
(8? —Ay)n= Ay(|E|2)-

@ LWP results for regular Sobolev data: [Schochet-Weinstein 1986]
[Ozawa-Tsutsumi 1992] [Linares-Ponce-Saut 2005].

@ Ghost effect: E a component of u,01, n a component of u, 1,
[Aoki-Takata 2001; Sone 2002].
Upshot: the Zakharov approximation to Euler-Maxwell is unstable.

Raman and Brillouin instabilities.



Instability of an ansatz for Euler-Maxwell:

) H(u - Ua)\t:oH <K K arbitrarily large,

> X K’ arbitrarily small, t. = O(y/2|In¢]).

© |[|(u—ua).

What is responsible for the instability?

@ Not the degree of precision of the approximate solution u,.

When plugged into Euler-Maxwell, u, yields an arbitrarily small remainder O(EKN),

K" arbitrarily large.
@ Not the smoothness of u, or u.
Both are C* in [0, t.] x R®. The key initial perturbation u,(0) — u(0) is CS°.

@ Not the structure of two-fluid Euler-Maxwell for fixed € > 0.

It's symmetric hyperbolic.



Instability of the Zakharov approximation to Euler-Maxwell:

° H(u — ua)‘ton = K arbitrarily large,

> K K’ arbitrarily small, t. = O(y/2|In¢]).

b ||(U — Ua)e,

Where are the singularities?

@ The initial data are high-frequency

us(0, x, y) = Re <eikX/Ea (x, \2) ) :

@ The Euler-Maxwell system depends on ¢ via 1/¢.

In particular contains a bilinear term with a 1/./¢ prefactor.

Caricature: y' = (1/1/€)y>.



Euler-Maxwell:

(a) Maxwell in vacuum:

HB+VXxE=0, 8E—-VxB=0,

B 0 V % B
w(2)+ (o W) ()
Symmetric hyperbolic structure:

O + Z AjOy;, A; symmetric.
1<<3

(b) Euler-Maxwell describes light-matter interactions: systems of the form

O + Ao + Z AjOy;, Ao skew-symmetric, A; symmetric.
1<j<3



Planes waves supported by a symmetric hyperbolic system:
Given 0; + Ao + Z Ajdy;, given £ € R3 :

1<j<3
looking for A € R and 3 € RV such that

Oc+ Ao+ Y Ady) (e 3) =0
1<j<3

or
det (—iX+Ag+i >  Ai&) =0,
1<j<3

a corresponding eigenvector

Solutions A = A(§) are locally defined, not 1-homogeneous



€ is wavelength

Fast space-time oscillations: typical frequencies are 1/¢.

(at+}Ao+ Z Ajy,) (/6202 3)
< 1<j<3

Il
o

or
det (—iX+Ag+i > Ai) =0,
1<j<3

3 corresponding eigenvector

The high-frequency linear hyperbolic operator is

1
8t + *(Ao + Z AJ'E({“)XJ. )
: 15j<3
—_—
=:A(gdx)



i\ =i\/1+ €2

i\ = i/T+ 62

I)\3EO

i\ = —i/1+ 2[E]

iXs = —i\/1+ €2

Figure: The characteristic variety for the Euler-Maxwell equations linearized at u = 0.
The parameter 0. is ~ 1073,



Linearized Euler-Maxwell at
u=20:

o fast Klein-Gordon modes
(+ the laser)

@ slow Klein-Gordon modes

(+> the electrons)

@ slow acoustic modes
(+> the ions)



0tB+V XE=0

1
OE—-—V xB= ge\/E”evE — veni

1
AN
Otve + VeEbe(Ve - V)Ve + 0.V ne = —é(E +v/eleve x B)
(EM){ 0¢ne + v/e0e(Ve - V)ne + 0V - ve =0

Orvi +e(vi - V)vi +VeVn; = 9:/5( +evi x B)
Orn; +e(vi - V)n; + VeV vi=0
\V-BzO V-Ezgée(n;—ne)
that is
Oru + 1(A + A( £dx)) u—iB(u u) +h.o.t
¢ - Ao y E0x =z

KG/KG/ac, frequencies ~ 1/e
plus convection



Nonlinear instability from spectral instability:

For s large enough : u € CO([0, T.(¢)], H*(R3)).
Ui=i— i, v(t,x,y)=v(t,x,Vey).

Let t.(¢) be s.t. FL! are controlled (< X" on [0, t.(¢)]:

_K—-K'  Cln|lng[+InC

t(e) = TevElIne|,  To=— S Ve.

With s — sy large enough,
a(t)]|zs < Xin e[*e!/VE on [0, t,(c)].
With uin =3 cn e'd%op,(Hy)d:
in Tev/El Inel, ) > Ce'€,

[tin|eoe < [d]ese (1+[Inel 4+ [In][d]es])-



First viewpoint on resonances:

resonances are stationary points for a relevant phase

Oru+ — (Ao—I—A()/Eﬁs@ ) u=

KG/KG/ac

—B(u, u) +hot”

%.—‘

Linearized equations around the WKB solution uj :

linear hyperbolic =:B(us)u
Oeu + = (A0 + A(0,£0x)) u

=A

A

\2 B(ua,u) + B(u, u,) .

large linear source

Implicit representation:

t
1 / e(t=AE B, () u(t)) dt’.

u=e"eu(0) +
€Jo



- . - 1 b tA)e
Implicit representation: u = e"/u(0) + 7z / A e By () u(t) dt’ .
g Jo

For very small time:

hence key is bound for

t
\2/ e(t—t’)A/&B(ua(t/))et’A/au(O) dt’
0

which takes the form

\[/ ('t/ (=Dx )) f(t') dt’

_ . it'd(e€)\ 2, /
= \@/0 /Rgexp </x-§+€> f(t', &) dt d€.



ot -
Oscillatory integrals: J = i/ exp (D) f(t') dt'.
Ve Jo €

WKB datum: u,(0,x) = Re (e““x/ga(x)).
Characteristic frequencies A solve det (—iX + Ao + i), Ai§;) =0

Non-stationary phase argument: away from the resonant set

{¢ e R, o(¢) =0}
integrate by parts in time to find J = O( /¢).

The phase takes the form
(&) = Aj(§+ k) —w = A (),

where

@ k is the initial wavenumber and w an associated characteristic
frequency

@ ) and \j are characteristic frequencies



i\ =i+ €2

i\ = iy/1+ 02E

A3 =0

i\ = —i\/1+ 2[¢]

i = —i/1+ [€)?

Figure: The characteristic variety, i.e. solutions & — A(§) of
det (—iA + Ao +i>_; Aj§j) = 0 and the fundamental phase (w, k).



Figure: Examples of resonances, ie zeros of A\j(k + ) —w — Ay (-).



"t "
Oscillatory integrals: ! / exp (M> f(t') dt'.
Ve Jo €

Away from the resonant set {¢& € R ®(&) = 0} integrate by parts in time.

What do we do close to the resonant set?

o With some luck f = 0 (a compatibility condition)

[Klainerman: null conditions; Joly-Métivier-Rauch: transparency]

@ Or: integrate by parts in & whenever possible!
[Germain-Masmoudi-Shatah: space-time resonances]

Space-time resonances are frequencies ¢ that belong to

{® =0} N {9 = 0}.



Second viewpoint on resonances:

resonances are small divisors in a homological equation [Poincaré]

1 1 - ,
8tu +ZAu=—Bu two distinct scales:
g 15

e e

A : order one (as a differential operator). B : order zero.

Looking for Q of order —1 such that
v=(Id+ Q) u

solves a simpler equation. We find

8tv—|—éAv: (B—[A,Q])v +lo.t.

1
NG
Homological equation:

B-[A,Q]=0 (or = v/2Q, with Q order 0).



Oru + éAu = %Bu change of variable: v = (Id + v/€Q) v solves

Orv + %Av = \%(B —[A, Q])v + l.o.t.

Homological equation:

B—[A Q=0

takes the form

(Ai(€ 4 k) = Ap(§) = w)Qyr = Mj(§ + k) B(ua)Mji (€)
with Qjj one entry in the matrix-valued pseudo-differential symbol
Q(€7 t? X7 E)

Away from the zeros of \;(- + k) — A\j(-) — w, we remove B from the
right-hand side of the equation.

This focuses the analysis in the frequency space to a neighboorhood of the
resonant set.



Third viewpoint on resonances:

the resonant set is the locus of weak hyperbolicity for an equivalent linear
operator

meaning that there is a change of variable such that

1 1
15) -Au=—B
tU+€ u NG u

transforms into a collection of systems of the form
L[ i(Nj(eOx + k) —w) 0 1 0 bt
vt 2 < 0 iN(ed) ) T ELb 0 )Y
and bounds for u imply bounds for v and conversely.

Existence of such a change of variable depends heavily on the structure of
the resonant set.



1
From O:wu+ “Au= to
€

1
—Bu
N
1 i+ k) —w) 0 _ 10 b
Orv + - ( 0 iXjr (€0%) V= Vel b™ 0 v

The eigenvalues of
are

i( (€ +0k)_w) iAj?(f) > - \}5 ( - b0+ >
1

?a(i(Aj(§+ k) =+ (€) £ (4eb¥b™ = (€ + k) —w = Ay (§))’ >1/2)'

o Far from the zeros of Aj(- + k) —w — Aj(-), the spectrum is purely
imaginary.

o At a zero of \j(- + k) —w — Aj(+), the lower-order perturbation terms
\/2b* may cause the spectrum to bifurcate away from the imaginary

axis.



Euler-Maxwell: 0ru + %(Ao + A(Veu,edy,\edy))u = L B(u,u).

NG
WKB approximate solution u, = ZE"/%"F’(KVM)/EU”,,, (t,x, L) .
Jsp \@
1 1
Linearized E-M around WKB: 0:u + - (Ao + A(Veu,, e0x, /20y ) ) u = TB(ua)u.
€

Goal: bounds in time O(y/e|In¢|).

Goal is to get a grasp on the linear perturbed operator

%(A0 + A(VEU, 0y, v/ED,)) — —=B(us).

B i

in time O(y/¢|Ingl).
Issues:

@ singular prefactor 1//e
@ singularity of the WKB solution: wu, ~ e"(k"‘_"”)/eua,ovl(t,x,y/\/g)



Linearized E-M around WKB: 9:u + E(Ao + A(Vzu,, bk, \/Eé)y))u = %B(ua)u.
€ €

The WKB approximate solution u, ~ e/ (**=«8/ o (t x,y/\/€)

Issues: fast oscillations, singular WKB profile, large 1/1/¢ prefactor

1 1
Our-approach: spectrum of E(AO + A(Vzua,05)) — ﬁB(ua).

Spectral approach to instability problems in fluid mechanics: [Grenier 2000,
Gérard-Varet, Dormy 2005]
Spectral approach to stability of traveling waves: [Sattinger 1976, ... Liu, Serre,

Zumbrun]

1 1
Our approach: spectrum of =(Ag + A(Veua,|ie€, iven|) — 7B(ua).
€ 5

We study spectra of symbols rather than operators.

Symbols are (x, y, &, n)-dependent matrices. Hence spectral problem in finite dimensions.



The symbolic flow method reduces a spectral problem:

SpA(US(t7X7y)758X7\£a}’) L (1)

into a spectral problem in finite dimensions:

spA(us(t, x,y), i&, in) (2)

Instead of having to compute (1) we compute (2) and from (2) deduce
how?? trivial
estimates for the solution to

Oru + gA(us(t,x,y),&?@X, Vedy)u = 0.

Limitations:
e short time O(v/¢|In¢|)

@ order-zero operators

[Lu, T 2015][T, 2016][Lerner, Nguyen, T 2016]



The symbolic flow method: the solution to

1 ix(Nj(- + k) —w) 0 1 0 bt
Oru + ~OP: < 0 A u= \/gops N u

=:A =:B

is given by
u ~ op.(5(0; t))u(0), t < Tyellnel,

where S solves

1
—0,A-0,5 =
577 Yy

1
—BS, S(m:7) =1d.
N (73 7)

NG

&5+éA5+

op.(a)f = /R3 e Na(x,y, €, \en)f(€,m)dédn,  (&,m) € R x R2.

X : smooth frequency truncation around the bounded resonant set.



The auxiliary partial differential equation for the symbolic flow:
S(r;t,x,y,&,m) solves

L

TEONA - 0yS =

9:S + éAS + BS,  S(ri7)=1d.

1
NG
Symbolic analysis:

N 1/, .
M(e,t.x &y, 9) = 2 (IA — VeB + Veiy - anA>

_1 < iM(E+kn) —w+ ey Oh(E+km)  Vexbt(x,y,&m) )
e Vexb™(x,y,€,m) iAo+ VEy-Ohr2) )

with eigenvalues 2)‘%/1 =tr M £ 02, with (o := A\ (- + k) —w — o)

6= —p? 4+ 23/epy - Opp —e(y - 3,,@)2 +4cbT b



Symbolic analysis for the operator in the PDE for the symbolic flow:

real eigenvalues <= § >0 <= instability.

With ¢ the resonant phase:

0= =% + 220y - Ogp — e(J - Oyp)® + 4eb™ b™

e »(&,m) #0 = 6 < 0: no instability far from resonances.

e ¢(&,m) =0and 9,p(&,n) # 0 : a resonance which is not a space-time
resonance. By spatial decay of the WKB profile, y is small hence y is
large. Hence —&(§ - 9,p)? dominates and § < 0.

e p(&,m) =0, dyp(&,n) =0 instability if bTb~ > 0.



