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Physical context: inertial confinement fusion

from wikipedia:

Inertial confinement fusion is a type of fusion energy research that
attempts to initiate nuclear fusion reactions by heating and compressing a
fuel target, typically in the form of a pellet that most often contains a
mixture of deuterium and tritium. Typical fuel pellets are about the size of
a pinhead. To compress and heat the fuel, energy is delivered to the outer
layer of the target using high-energy beams of laser light.

Photo: LLNL, 1984, source: wikipedia



Physical context: inertial confinement fusion

from wikipedia:

Throughout the 1980s and ’90s, many experiments were conducted in
order to understand the complex interaction of high-intensity laser light
and plasma. These led to the design of newer machines, much larger, that
would finally reach ignition energies.

LLNL, USA

LMJ, CEA, Bordeaux

from the CEA webpage: “très grand instrument ... mis en service en
2014”

Institute for Laser engineering, Osaka



Physical context: inertial confinement fusion

Huge equipments, but...

experiments are not satisfactory:
“Laser-plasma instabilities inhibit the deposition of energy ... [New
broad-bandwith lasers could potentially] suppress high-frequency
instabilities like [...] stimulated Râman scattering”
White paper on opportunities in plasma physics, 2019.

Râman effect: predicted by Smekal in 1923, observed by Râman and
Krishnan (and Mandelstam, independently) in 1928.



Plan:

the framework: Euler-Maxwell and 3 scales geometric optics

starting from spectral properties: the linearized equations around 0

validation of the instability for the nonlinear system

three viewpoints on resonances and space-time resonances

the symbolic flow approach to the spectral instability problem



General mathematical context:

quasi-linear or semi-linear hyperbolic systems depending on small
(large) parameters

highly-oscillating data (“geometric optics”)

References: Lax, Keller, Hunter, Majda, Rosales, Newell, Moloney,
Joly, Métivier, Rauch, Guès, Colin, Lannes, Williams, Coulombel. . .



Specific mathematical context:

Geometric optics.

Highly-oscillatory solutions to hyperbolic systems.

Supercritical

∼ long time

geometric optics: [Joly-Métivier-Rauch, 2000]

compatibility/“null forms” conditions

bearing on nonlinearities, at resonances

Laser-plasma interactions.

Euler (fluid) - Maxwell (electromagnetic waves).

[Germain-Masmoudi, 2014]

[Guo-Pausader-Ionescu, 2016]

}
global existence results

based on analysis of space-time resonances



Theorem. Two-fluid Euler-Maxwell with small parameter ε > 0 :

there exists approximate solutions ua,

there exists exact solutions u,

such that∥∥(u − ua)|t=0

∥∥ = εK K > 0 arbitrarily large,∥∥(u − ua)|t=O(
√
ε| ln ε|)

∥∥ ≥ εK ′ K ′ > 0 arbitrarily small.

‖ · ‖: pointwise (L∞) or weighted Sobolev (Hs
ε ) initially.

‖ · ‖ : pointwise at final observation time.

ε : wavelength of incident light.

This theorem: a justification of high-frequency Râman instabilities for
laser-plasma interactions.



Instability of an ansatz.

The ansatz:

ua =
∑

0≤j≤Ka

p∈Hj

εj/2e ip(k·x−ωt)/εua,j ,p

(
t, x ,

y√
ε

)
,

where ua,j ,p is independent of ε, Ka is large, Hj ⊂ Z is finite.

The wavenumber k is given and the frequency ω is to be determined.

We show that this ansatz is

consistent: leads to a well-posed system of equations,

some compatibility conditions/null forms do hold

unstable: in the sense of the theorem.
some compatibility conditions/null forms do NOT hold



Ansatz: ua =
∑
j,p

εj/2e ip(k·x−ωt)/εua,j,p

(
t, x ,

y√
ε

)
.

Leading profile: ua,0,±1; first corrector: ua,1,0, . . .

The Zakharov system.

Components of the leading profile and first corrector satisfy

(Z)

{
i(∂t + c(k)∂x)E −∆yE = n E ,

(∂2t −∆y )n = ∆y

(
|E |2

)
.

LWP results for regular Sobolev data: [Schochet-Weinstein 1986]
[Ozawa-Tsutsumi 1992] [Linares-Ponce-Saut 2005].

Ghost effect: E a component of ua,0,1, n a component of ua,1,0
[Aoki-Takata 2001; Sone 2002].

Upshot: the Zakharov approximation to Euler-Maxwell is unstable.

Râman and Brillouin instabilities.



Instability of an ansatz for Euler-Maxwell:∥∥(u − ua)|t=0

∥∥ ≤ εK K arbitrarily large,∥∥(u − ua)|tε
∥∥ ≥ εK ′

K ′ arbitrarily small, tε = O(
√
ε| ln ε|).

What is responsible for the instability?

Not the degree of precision of the approximate solution ua.

When plugged into Euler-Maxwell, ua yields an arbitrarily small remainder O(εK
′′

),

K ′′ arbitrarily large.

Not the smoothness of ua or u.

Both are C∞ in [0, tε]× R3. The key initial perturbation ua(0)− u(0) is C∞c .

Not the structure of two-fluid Euler-Maxwell for fixed ε > 0.

It’s symmetric hyperbolic.



Instability of the Zakharov approximation to Euler-Maxwell:∥∥(u − ua)|t=0

∥∥ = εK K arbitrarily large,∥∥(u − ua)|tε
∥∥ ≥ εK ′

K ′ arbitrarily small, tε = O(
√
ε| ln ε|).

Where are the singularities?

The initial data are high-frequency

ua(0, x , y) = <e
(
e ikx/εa

(
x ,

y√
ε

))
.

The Euler-Maxwell system depends on ε via 1/ε.

In particular contains a bilinear term with a 1/
√
ε prefactor.

Caricature: y ′ = (1/
√
ε)y 2.



Euler-Maxwell:

(a) Maxwell in vacuum:

∂tB +∇× E = 0, ∂tE −∇× B = 0,

or

∂t

(
B
E

)
+

(
0 ∇×
−∇× 0

)(
B
E

)
= 0.

Symmetric hyperbolic structure:

∂t +
∑

1≤j≤3
Aj∂xj , Aj symmetric.

(b) Euler-Maxwell describes light-matter interactions: systems of the form

∂t + A0 +
∑

1≤j≤3
Aj∂xj , A0 skew-symmetric, Aj symmetric.



Planes waves supported by a symmetric hyperbolic system:

Given ∂t + A0 +
∑

1≤j≤3
Aj∂xj , given ξ ∈ R3 :

looking for λ ∈ R and ~a ∈ RN such that(
∂t + A0 +

∑
1≤j≤3

Aj∂xj
)(
e i(ξ·x−λt)~a

)
≡ 0

or 
det
(
− iλ+ A0 + i

∑
1≤j≤3

Ajξj
)

= 0,

~a corresponding eigenvector

Solutions λ = λ(ξ) are locally defined, not 1-homogeneous



Fast space-time oscillations: typical frequencies are 1/ε.

ε is wavelength

(
∂t +

1

ε
A0 +

∑
1≤j≤3

Aj∂xj
)(
e i(ξ·x−λt)/ε~a

)
≡ 0

or 
det
(
− iλ+ A0 + i

∑
1≤j≤3

Ajξj
)

= 0,

~a corresponding eigenvector

The high-frequency linear hyperbolic operator is

∂t +
1

ε

(
A0 +

∑
1≤j≤3

Ajε∂xj︸ ︷︷ ︸
=:A(ε∂x )

)
.



iλ1 = i
√

1 + |ξ|2

iλ2 = i
√

1 + θ2
e |ξ|2

iλ3 ≡ 0
iλ4 = −i

√
1 + θ2

e |ξ|2

iλ5 = −i
√

1 + |ξ|2

Figure: The characteristic variety for the Euler-Maxwell equations linearized at u = 0.
The parameter θe is ' 10−3.



Linearized Euler-Maxwell at
u = 0 :

fast Klein-Gordon modes

(↔ the laser)

slow Klein-Gordon modes
(↔ the electrons)

slow acoustic modes
(↔ the ions)



(EM)



∂tB +∇× E = 0

∂tE −∇× B =
1

ε
e
√
εneve −

1

θe
√
ε
e
√
εni vi

∂tve +
√
εθe(ve · ∇)ve + θe∇ne = −1

ε
(E +

√
εθeve × B)

∂tne +
√
εθe(ve · ∇)ne + θe∇ · ve = 0

∂tvi + ε(vi · ∇)vi +
√
ε∇ni =

1

θe
√
ε

(E + εvi × B)

∂tni + ε(vi · ∇)ni +
√
ε∇ · vi = 0

∇ · B = 0 ∇ · E =
1

εθe
(ni − ne)

that is

∂tu +
1

ε

(
A0 + A(

√
εu, ε∂x)

)
︸ ︷︷ ︸

KG/KG/ac, frequencies ∼ 1/ε
plus convection

u =
1√
ε
B(u, u) + h.o.t.



Nonlinear instability from spectral instability:

For s large enough : u ∈ C 0([0,T∗(ε)],Hs(R3)).

u̇ := ũ − ũa, ṽ(t, x , y) = v(t, x ,
√
εy).

Let t∗(ε) be s.t. FL1 are controlled (≤ εK ′) on [0, t∗(ε)]:

t∗(ε) ≥ Tε
√
ε| ln ε|, Tε =

K − K ′

C
− C ′ ln | ln ε|+ lnC

γ

√
ε.

With s − s1 large enough,

‖u̇(t)‖ε,s1 . εK | ln ε|?etγ/
√
ε on [0, t∗(ε)].

With uin =
∑

q∈H e iqθopε(Hq)u̇:

‖uin(Tε
√
ε| ln ε|, ·)‖L∞ ≥ CεK

′
,

‖uin‖L∞ . |u̇|L∞
(
1 + | ln ε|+ | ln ‖u̇‖ε,s1 |

)
.



First viewpoint on resonances:

resonances are stationary points for a relevant phase

∂tu +
1

ε

(
A0 + A(���

√
εu, ε∂x)

)
︸ ︷︷ ︸

KG/KG/ac

u =
1√
ε
B(u, u) +���h.o.t.

Linearized equations around the WKB solution ua :

∂tu +
1

ε

linear hyperbolic︷ ︸︸ ︷(
A0 + A(0, ε∂x)

)︸ ︷︷ ︸
=:A

u =
1√
ε

=:B(ua)u︷ ︸︸ ︷
B(ua, u) + B(u, ua)︸ ︷︷ ︸

large linear source

.

Implicit representation:

u = etA/εu(0) +
1√
ε

∫ t

0
e(t−t

′)A/εB(ua(t ′))u(t ′) dt ′.



Implicit representation: u = etA/εu(0) +
1√
ε

∫ t

0

e(t−t′)A/εB(ua(t′))u(t′) dt′.

For very small time:
u(t) ' etA/εu(0),

hence key is bound for

1√
ε

∫ t

0
e(t−t

′)A/εB(ua(t ′))et
′A/εu(0) dt ′

which takes the form

1√
ε

∫ t

0
exp

(
it ′Φ(εDx)

ε

)
f (t ′) dt ′

=
1√
ε

∫ t

0

∫
R3
ξ

exp

(
ix · ξ +

it ′Φ(εξ)

ε

)
f̂ (t ′, ξ) dt ′ dξ.



Oscillatory integrals: J =
1√
ε

∫ t

0

exp

(
it′Φ(εDx)

ε

)
f (t′) dt′.

WKB datum: ua(0, x) = <e
(
e ik·x/εa(x)

)
.

Characteristic frequencies λ solve det (−iλ+ A0 + i
∑

j Ajξj) = 0

Non-stationary phase argument: away from the resonant set

{ξ ∈ R3, Φ(ξ) = 0}

integrate by parts in time to find J = O(
√
ε).

The phase takes the form

Φ(ξ) = λj(ξ + k)− ω − λj ′(ξ),

where

k is the initial wavenumber and ω an associated characteristic
frequency

λj and λj ′ are characteristic frequencies



iλ1 = i
√

1 + |ξ|2

iλ2 = i
√

1 + θ2
e |ξ|2

iλ3 ≡ 0
iλ4 = −i

√
1 + θ2

e |ξ|2

iλ5 = −i
√

1 + |ξ|2

ω

k

Figure: The characteristic variety, i.e. solutions ξ → λ(ξ) of
det (−iλ+ A0 + i

∑
j Ajξj) = 0 and the fundamental phase (ω, k).



ξ ∈ R

λ2

λ1

λ3

λ5

λ4

(1,2)

(1,2)

(1,3)
(2,3) (2,3)

(3,4)(3,4)

ω

k

Figure: Examples of resonances, ie zeros of λj(k + ·)− ω − λj′(·).



Oscillatory integrals:
1√
ε

∫ t

0

exp

(
it′Φ(εDx)

ε

)
f (t′) dt′.

Away from the resonant set {ξ ∈ R3, Φ(ξ) = 0} integrate by parts in time.

What do we do close to the resonant set?

With some luck f̂ = 0 (a compatibility condition)

[Klainerman: null conditions; Joly-Métivier-Rauch: transparency]

Or: integrate by parts in ξ whenever possible!

[Germain-Masmoudi-Shatah: space-time resonances]

Space-time resonances are frequencies ξ that belong to

{Φ = 0} ∩ {∂ξΦ = 0}.



Second viewpoint on resonances:

resonances are small divisors in a homological equation [Poincaré]

∂tu +
1

ε
Au =

1√
ε
Bu two distinct scales:

ε, ξ

A : order one (as a differential operator). B : order zero.

Looking for Q of order −1 such that

v = (Id +
√
εQ)−1u

solves a simpler equation. We find

∂tv +
1

ε
Av =

1√
ε

(
B− [A,Q]

)
v + l.o.t.

Homological equation:

B− [A,Q] = 0 (or =
√
εQ̃, with Q̃ order 0).



∂tu +
1

ε
Au =

1√
ε
Bu change of variable: v = (Id +

√
εQ)−1u solves

∂tv +
1

ε
Av =

1√
ε

(
B− [A,Q]

)
v + l.o.t.

Homological equation:
B− [A,Q] = 0

takes the form

(λj(ξ + k)− λj ′(ξ)− ω)Qjj ′ = Πj(ξ + k)B(ua)Πj ′(ξ)

with Qjj ′ one entry in the matrix-valued pseudo-differential symbol
Q(ε, t, x , ξ).

Away from the zeros of λj(·+ k)− λj ′(·)− ω, we remove B from the
right-hand side of the equation.

This focuses the analysis in the frequency space to a neighboorhood of the
resonant set.



Third viewpoint on resonances:

the resonant set is the locus of weak hyperbolicity for an equivalent linear
operator

meaning that there is a change of variable such that

∂tu +
1

ε
Au =

1√
ε
Bu

transforms into a collection of systems of the form

∂tv +
1

ε

(
i(λj(ε∂x + k)− ω) 0

0 iλj ′(ε∂x)

)
v =

1√
ε

(
0 b+

b− 0

)
v

and bounds for u imply bounds for v and conversely.

Existence of such a change of variable depends heavily on the structure of
the resonant set.



From ∂tu +
1

ε
Au =

1√
ε
Bu to

∂tv +
1

ε

(
i(λj(ε∂x + k)− ω) 0

0 iλj′(ε∂x)

)
v =

1√
ε

(
0 b+

b− 0

)
v

The eigenvalues of

1

ε

(
i(λj(ξ + k)− ω) 0

0 iλj ′(ξ)

)
− 1√

ε

(
0 b+

b− 0

)
are

1

2ε

(
i(λj(ξ+k)−ω+λj ′(ξ))±

(
4εb+b−− (λj(ξ+k)−ω−λj ′(ξ))2

)1/2 )
.

Far from the zeros of λj(·+ k)− ω − λj ′(·), the spectrum is purely
imaginary.

At a zero of λj(·+ k)− ω − λj ′(·), the lower-order perturbation terms√
εb± may cause the spectrum to bifurcate away from the imaginary

axis.



Euler-Maxwell: ∂tu +
1

ε

(
A0 + A(

√
εu, ε∂x ,

√
ε∂y )

)
u =

1√
ε
B(u, u).

WKB approximate solution ua =
∑
j,p

εj/2e ip(k·x−ωt)/εua,j,p

(
t, x ,

y√
ε

)
.

Linearized E-M around WKB: ∂tu +
1

ε

(
A0 + A(

√
εua, ε∂x ,

√
ε∂y )

)
u =

1√
ε
B(ua)u.

Goal: bounds in time O(
√
ε| ln ε|).

Goal is to get a grasp on the linear perturbed operator

1

ε
(A0 + A(

√
εua, ε∂x ,

√
ε∂y ))− 1√

ε
B(ua).

in time O(
√
ε| ln ε|).

Issues:

singular prefactor 1/
√
ε

singularity of the WKB solution: ua ' e i(k·x−ωt)/εua,0,1(t, x , y/
√
ε)



Linearized E-M around WKB: ∂tu +
1

ε

(
A0 + A(

√
εua, ε∂x ,

√
ε∂y )

)
u =

1√
ε
B(ua)u.

The WKB approximate solution ua ' e i(k·x−ωt)/εua,0,1(t, x , y/
√
ε)

Issues: fast oscillations, singular WKB profile, large 1/
√
ε prefactor

Our approach: spectrum of
1

ε
(A0 + A(

√
εua, ε∂x))− 1√

ε
B(ua).

Spectral approach to instability problems in fluid mechanics: [Grenier 2000,

Gérard-Varet, Dormy 2005]

Spectral approach to stability of traveling waves: [Sattinger 1976, ... Liu, Serre,

Zumbrun]

Our approach: spectrum of
1

ε
(A0 + A(

√
εua, iεξ, i

√
εη ))− 1√

ε
B(ua).

We study spectra of symbols rather than operators.

Symbols are (x , y , ξ, η)-dependent matrices. Hence spectral problem in finite dimensions.



The symbolic flow method reduces a spectral problem:

spA(us(t, x , y), ε∂x ,
√
ε∂y ) : ?? (1)

into a spectral problem in finite dimensions:

spA(us(t, x , y), iξ, iη) (2)

Instead of having to compute (1)

how??

we compute (2)

trivial

and from (2) deduce

estimates for the solution to

∂tu +
1

ε
A(us(t, x , y), ε∂x ,

√
ε∂y )u = 0.

Limitations:

short time O(
√
ε| ln ε|)

order-zero operators

[Lu, T 2015][T, 2016][Lerner, Nguyen, T 2016]



The symbolic flow method: the solution to

∂tu +
1

ε
opε

(
iχ(λj(·+ k)− ω) 0

0 iχλj ′

)
︸ ︷︷ ︸

=:iA

u =
1√
ε
opε

(
0 χb+

χb− 0

)
︸ ︷︷ ︸

=:B

u

is given by
u ' opε(S(0; t))u(0), t ≤ T

√
ε| ln ε|,

where S solves

∂tS +
i

ε
AS +

1√
ε
∂ηA · ∂yS =

1√
ε
BS , S(τ ; τ) = Id.

opε(a)f =

∫
R3

e ixξ+iy ·ηa(x , y , εξ,
√
εη)f̂ (ξ, η)dξdη, (ξ, η) ∈ R× R2.

χ : smooth frequency truncation around the bounded resonant set.



The auxiliary partial differential equation for the symbolic flow:
S(τ ; t, x , y , ξ, η) solves

∂tS +
i

ε
AS +

1√
ε
∂ηA · ∂yS =

1√
ε
BS , S(τ ; τ) = Id.

Symbolic analysis:

M(ε, t, x , ξ, η; y , ŷ) :=
1

ε

(
iA−

√
εB +

√
εi ŷ · ∂ηA

)
=

1

ε

(
i(λ1(ξ + k, η)− ω +

√
εŷ · ∂ηλ1(ξ + k , η))

√
εχb+(x , y , ξ, η)√

εχb−(x , y , ξ, η) i(λ2 +
√
εŷ · ∂ηλ2)

)
,

with eigenvalues 2λ±M = trM± δ1/2, with (ϕ := λ1(·+ k)− ω − λ2)

δ := −ϕ2 + 2
√
εϕŷ · ∂ηϕ− ε(ŷ · ∂ηϕ)2 + 4εb+b−



Symbolic analysis for the operator in the PDE for the symbolic flow:

real eigenvalues ⇐⇒ δ > 0 ⇐⇒ instability.

With ϕ the resonant phase:

δ := −ϕ2 + 2
√
εϕŷ · ∂ηϕ− ε(ŷ · ∂ηϕ)2 + 4εb+b−

ϕ(ξ, η) 6= 0 =⇒ δ < 0 : no instability far from resonances.

ϕ(ξ, η) = 0 and ∂ηϕ(ξ, η) 6= 0 : a resonance which is not a space-time
resonance. By spatial decay of the WKB profile, y is small hence ŷ is
large. Hence −ε(ŷ · ∂ηϕ)2 dominates and δ < 0.

ϕ(ξ, η) = 0, ∂ηϕ(ξ, η) = 0 : instability if b+b− > 0.


