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Motivation: Oscillating water column (OWC)

OWC installed in 1990 at Trivandrum, India.

OWC installed in Australia, about 2005.

Figure: Taken from Falcao, Henriques, Renewable Energy, 2015.
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Reduce to two transmission problems
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Mathematical configuration

Notations

ζ(x , t) is the surface elevation around the rest state;

h(x , t) is the fluid height (at rest hs before the step, h0 after the step);

q(x , t) is the horizontal discharge (q =
∫ ζ
−hbot udz = hu);

P(x , t) is the surface pressure.
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Mathematical configuration

Constraints and unknowns

Exterior domain: E = E− ∪ E+
l ∪ E+

r (domain before the step, before the
structure and inside the chamber):

P = Patm in E− ∪ E+
l ; P = Patm + Pch(t) in E+

r ; ζ is unknown in E
Interior domain I = (l0 − r , l0 + r): (under the structure):

P is unknown ζ = ζw (constant in t and x).
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Mathematical configuration

Previous results

D. Lannes, On the dynamics of floating structures, 2017;

E. Godlewski, M. Parisot, J. Sainte-Marie and F. Wahl, relaxation of the constraint, 2018;

T. Iguchi and D. Lannes, 1D NSW equations, 2019;

E. Bocchi, for the 2D-radial NSW equations, 2019;

D. Maity, J. San Martin, T. Takahashi, M. Tucsnak, visous 1D NSW, 2019;

D. Lannes, L. Weynans, boundary conditions for Boussinesq, 2019;

D. Bresch, D. Lannes, G. Mérivier, for the 1D-Boussinesq and fixed solid, 2020.
....
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Derivation of the Model

Step 1 : Transmission problem near the Step
The motion of wave is described by the 1D shallow water equations :

E− :



∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −1

ρ
h∂xPatm︸ ︷︷ ︸

=0

h = hs + ζ, P = Patm

~ww� First transmission problem: ζ|x=0−
= ζ|x=0+ , q|x=0−

= q|x=0+

E+
l :


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −1

ρ
h∂xPatm= 0

h = h0 + ζ, P = Patm
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Step 2 : Transmission problem near the Structure

E+
l :


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0

h = h0 + ζ, P = Patm

Coupling conditions :

~www�
Continuity of q

q(t, l0 ± r) = qi (t, l0 ± r)

ζw = ζi ; ∂tζi = 0 ; qi (t, x) = qi (t)

;
first transmission condition :

q|x=l0+r
− q|x=l0−r

:=JqK = 0

E+
r :


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −1

ρ
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Step 3: Derive the second transmission condition near the Structure

Local energy :
Exterior : ∂teext + ∂x fext = Pair∂xq;

eext = ρ q2

2h + gρ ζ
2

2 and fext = q
(
ρ q2

2h2 + gρζ + Pair

)
.

Interior : ∂teint + ∂x fint = 0.

eint = ρ
q2
i

2hw
+ ρg

ζ2
w

2 and fint = qiP.

Global energy :

Exterior : ∂t

∫
E
eext+∂x

∫
E
fext =

∫
E
Pair∂xq; Interior : ∂t

∫
I
eint+∂x

∫
I
fint = 0.

We then have

∂t

(∫
E
eext +

∫
I
eint + Esol

)
+ JfintK− JfextK = −JPairqK = −qiPch.

Remarque : JPairK = (Patm + Pch)− Patm = Pch
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Step 3: Derive the second transmission condition near the Structure

The perturbation Pch(t) satisfies the ODE (without damping) 1

d

dt
Pch = γ1qi =⇒ 1

2γ1

d

dt
P2
ch = qiPch

where γ1 is a known physical parameter.

∂t

(∫
E
eext +

∫
I
eint + Esol +

1

2γ2
P2
ch

)
+ JfintK− JfextK = 0.

By fluid-solid energy conservation, we derive transmission condtion

JfintK− JfextK = 0.

1 JfintK = JqiP iK and d
dt qi = − hw

ρ ∂xP i =⇒ 2r d
dt qi = − hw

ρ JP iK

2 JfextK =
r
q(ρ q2

2h2 + gρζ + Pair)
z

We derive that

Pch(t)

ρ
+

s
q2

2h2
+ gζ

{
+

2r

hw

d

dt
qi = 0

1
The ODE of the Pressure is from ocean engineering literature : Dimakopoulos-Cooker-Bruce 2017, Falcão-Henriques-Gato 2016...
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Two transmission problems

In (−l , 0) :


∂tζ + ∂xq = 0

∂tq + ∂x
(

q2

h

)
+ gh∂xζ = 0

h = hs + ζ, P = Patm

First transmission problem l ζ|
x=0−

= ζ|x=0+ , q|x=0−
= q|x=0+

In (0, l0 − r) :


∂tζ + ∂xq = 0

∂tq + ∂x
(

q2

h

)
+ gh∂xζ = 0

h = h0 + ζ, P = Patm

Second trans. prob. l JqK = 0, 〈q〉 = qi , where qi ,Pch satisfy ODE

In (l0 + r , l1) :


∂tζ + ∂xq = 0

∂tq + ∂x
(

q2

h

)
+ gh∂xζ = 0

h = h0 + ζ, P = Patm + Pch(t)

Transmission problems  IBVP with semi-linear boundary conditions ?
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Reduction to an IBVP with semi-linear boundary conditions

q|x=l0+r
− q|x=l0−r

:= JqK = 0

1

2

(
q|x=l0−r

+ q|x=l0+r

)
:= 〈q〉 = qi

=⇒
M+U|x=l0+r

−M−U|x=l0−r
= V (G (t))

M± are 2× 2 constant matrices

Reformulate the system as

∂tU + A(U)∂xU = 0 in (0,T )× R−,

∂tU + A(U)∂xU = 0 in (0,T )× R+,

U|t=0
= U0(x) on R− ∪ R+,

M+U|x=0+ −M−U|x=0−
= V (G (t)) on (0,T ).

where U, U0 are R2-valued functions, A(U) is a 2× 2 real-valued matrix, V (·) is a
R2-valued given function with V (0) = 0 and G is a R2-valued function satisfying
the ODE.

(Jiao He) Wave-Structure interaction 30 mars 2022 11 / 30



Reduction to an IBVP with semi-linear boundary conditions

q|x=l0+r
− q|x=l0−r

:= JqK = 0

1

2

(
q|x=l0−r

+ q|x=l0+r

)
:= 〈q〉 = qi

=⇒
M+U|x=l0+r

−M−U|x=l0−r
= V (G (t))

M± are 2× 2 constant matrices

Reformulate the system as

∂tU + A(U)∂xU = 0 in (0,T )× R−,

∂tU + A(U)∂xU = 0 in (0,T )× R+,

U|t=0
= U0(x) on R− ∪ R+,

M+U|x=0+ −M−U|x=0−
= V (G (t)) on (0,T ).

where U, U0 are R2-valued functions, A(U) is a 2× 2 real-valued matrix, V (·) is a
R2-valued given function with V (0) = 0 and G is a R2-valued function satisfying
the ODE.

(Jiao He) Wave-Structure interaction 30 mars 2022 11 / 30



Quasilinear hyperbolic IBVP (with some diagonalizability) with semi-linear
boundary conditions

(PDE )


∂tu +A(u)∂xu = 0

u|t=0
= u0(x)

Mu|x=0
= V (G (t))

with (ODE )

Ġ = Θ
(
G , u|x=0

)
,

G (0) = G0.
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Well-posedness
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Hyperbolic linear initial boundary value problems

Let us first consider a linear system of the form (with constant matrix)
∂tu + A∂xu = 0 in (0,T )× R+,

u|t=0
= u0 on R+,

ν · u|x=0
= G (t) on (0,T ),

A: a 2× 2 constant matrix with
eigenvalues ±λ± and
eigenvectors e±;

ν ∈ R2 and Kreiss-Lopatinskĭi
condition ν · e+ 6= 0;

Why ?
Consider a general boundary condition

Mu|x=0
= G (t) on (0,T ).
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û(s, x) = ĉ+(s) exp(−sλ−1
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ĉ+ =
1

ν · e+
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Kreiss symmetrizer: a matrix S such that SA is symmetric and

there exist constants c1,C1 > 0 such that

c1|v |2 ≤ vTS(t, x)v ≤ C1|v |2;

there exist constants c2,C2 > 0 such that

vT (S(t)A(t))|x=0
v ≤ −c2|v |2 + C2|ν · v |2.

L2 energy estimate: multiplying equation ∂tu + A∂xu = 0 by S and taking the
L2((0, t)× R) scalar product with u, after integration by parts,

(Su(t), u(t))L2 −
∫ t

0

(SAu · u)|x=0
= (Su0, u0)L2 .

Note that the trace −(SAu · u)|x=0
cannot be controlled by the L2-norm of u.

Kreiss symmetrizer is a symmetrizer such that the term −(SAu · u)|x=0
has good

sign and the trace |u|x=0
|L2(0,t) can be controlled up to terms that depends only on

ν · u|x=0
= G .

‖u(t)‖L2 + |u|x=0
|L2(0,t) ≤ C (K0)eC(K)t

(
‖u(0)‖L2 + ‖G‖L2(0,t)

)
.
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Compatibility conditions
There are m necessary conditions for the existence of a solution of regularity
Cm−1([0,T ]× R+)

m = 1 : ν · u(0, 0) = G (0)

more generally, differentiating k-times the equation ∂tu + A∂xu = 0 with
respect to time, we have

uk+1 := ∂k+1
t u = −∂x∂kt u = −∂xuk .

initial condition: u0,k := uk|t=0

u0,k+1 = uk+1|t=0 = −∂xu0,k (1)

boundary condition : ν · uk|x=0 = ∂k
t G

ν · u0,k|x=0 = ∂k
t G|t=0 (2)

Definition: Let m ≥ 1. We say that the data u0 ∈ Hm(R+) and G ∈ Hm(0,T )
for the IBVP satisfy the compatibility condition at order m− 1 if {u0,j}mj=0 defined
in (1) satisfy (2) for k = 0, 1, · · · ,m − 1.
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Hyperbolic linear initial boundary value problems


∂tu +A(t, x)∂xu = 0

u|t=0
= u0(x)

Mu|x=0
= G (t)

A(t, x) is a 4× 4 matrix

M is a 2× 4 real-valued matrix

G (t) is given;

Kreiss symmetrizer: there exist constants c1,C1 ≥ 0 such that

c1|v |2 ≤ vTS(t, x)v ≤ C1|v |2

and there exist constants c2,C2 ≥ 0 such that

vT (S(t)A(t))|x=0
v ≤ −c2|v |2 + C2|Mv |2

For any t ∈ [0,T ], Lopatinskĭi matrix L(t) =ME (E is a matrix formed by
the corresponding eigenvectors) is invertible and ‖L(t)−1‖ ≤ 1

c0
.

u0, G satisfy the compatibility conditions.

Well-posedness 2 : a priori L2 estimate; high-order estimates; existence and
uniqueness; existence of a Kreiss symmetrizer.

2
T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic quasilinear initial boundary value problems
∂tu +A(u)∂xu = 0

u|t=0
= u0(x)

Mu|x=0
= G (t)

G (t) is given;

Kreiss-Lopatinskĭi condition

Sketch of proof of well-posedness.
Step 1. Choice of an iterative scheme.


∂tu

n+1 +A(un)∂xu
n+1 = 0

un+1
|t=0

= u0(x)

Mun+1
|x=0

= G (t)

(3)

we choose u0 as the first iterate
such that (∂kt u

0)t=0 = u0,k . Then
for IBVP (3) to the unknown un+1,
the u0,G satisfy the compatibility
conditions

Step 2. High-norm boundedness.

‖un‖Wm(T1) + |un|x=0
|m,T1 ≤ M, ∀n ∈ N.

Step 3. Low-norm convergence. One proves that the sequence un is convergent in
L2 and that the limit is in space Wm :=

⋂m
j=0 C

j([0,T ];Hm−j(R+)), endowed
with the norm

‖u‖Wm(T ) = sup
t∈[0,T ]

m∑
j=0

‖∂ j
tu(t)‖Hm−j (R+).
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Sketch of proof of well-posedness.
Step 1. Choice of an iterative scheme.


∂tu

n+1 +A(un)∂xu
n+1 = 0

un+1
|t=0

= u0(x)

Mun+1
|x=0

= G (t)

(3)

we choose u0 as the first iterate
such that (∂kt u

0)t=0 = u0,k . Then
for IBVP (3) to the unknown un+1,
the u0,G satisfy the compatibility
conditions

Step 2. High-norm boundedness.

‖un‖Wm(T1) + |un|x=0
|m,T1 ≤ M, ∀n ∈ N.

Step 3. Low-norm convergence. One proves that the sequence un is convergent in
L2 and that the limit is in space Wm :=

⋂m
j=0 C

j([0,T ];Hm−j(R+)), endowed
with the norm

‖u‖Wm(T ) = sup
t∈[0,T ]

m∑
j=0

‖∂ j
tu(t)‖Hm−j (R+).

(Jiao He) Wave-Structure interaction 30 mars 2022 18 / 30



Hyperbolic quasilinear initial boundary value problems
∂tu +A(u)∂xu = 0

u|t=0
= u0(x)

Mu|x=0
= G (t)

G (t) is given;

Kreiss-Lopatinskĭi condition
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Hyperbolic IBVP with semi-linear boundary conditions

(PDE )


∂tu +A(u)∂xu = 0

u|t=0
= u0(x)

Mu|x=0
= G (t)

with (ODE )

Ġ = Θ
(
G , u|x=0

)
,

G (0) = G0.

Theorem (2021)

Let T > 0 and m ≥ 2 be an integer. Suppose that u0 ∈ Hm(R) and
G0 ∈ Hm(0,T ) satisfy the compatibility conditions up to order m − 1, then there
exist 0 < T1 < T and a unique solution (u,G ) to (PDE-ODE) with

u ∈
m⋂
j=0

C j([0,T ];Hm−j(R+)) := Wm(T ) and G ∈ Hm+1(0,T ).

Key ingredients needed:

Kreiss-Lopatinskĭi conditions (Lopatinskĭi matrix is invertible), compatibility
conditions;
Iterative scheme (PDE and ODE), uniform bounds, convergence;
Estimates for G and the trace u|x=0
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Goal: boundedness of (un,G n) in Wm(T )× Hm+1(0,T );
convergence of (un,G n) in Wm−1(T )× Hm−1(0,T ).

Recall that

‖u(t)‖Hm + |u|x=0
|m,t ≤ C (K0)eC(K)t

(
‖u(0)‖Hm + ‖G‖Hm(0,t)

)
.

Iterative scheme of ODE

Ġ n+1 = Θ
(
G n, un|x=0

)
, G n+1(0) = G0.

Uniform bounded. By G n+1(t) = G n+1
|t=0

+
∫ t

0
Θ (G n(s), un(s)) ds, we have

‖G n+1‖Hm(0,T1) .
√

T1‖Θ(G n, un|x=0
)‖Hm(0,T1)

.
√

T1CΘ

(
‖G n‖Hm(0,T1) + |un|x=0

|m,T1

)
Convergence.

‖G n+1 − G n‖Hm−1(0,T1)

.
√
T1CΘ

(
‖G n − G n−1‖Hm−1(0,T1) + |(un − un−1)|x=0

|m−1,T1

)
.
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Numerical scheme and discretization of BCs
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Riemann invariants

1D Nonlinear shallow water equations in a compact form are given by

∂tU + A(U)∂xU = 0 with U =

(
ζ
q

)
, A(U) =

(
0 1

gh − q2

h2
2q
h

)
with eigenvalues

λ+(U) =
√
gh +

q

h
> 0, −λ−(U) = −

√
gh +

q

h

Taking the scalar product of the eq. with the associated eigenvectors, we obtain
two transport equations

∂tR(U) + λ+(U)∂xR(U) = 0, ∂tL(U)− λ−(U)∂xL(U) = 0,

for the right-going and left-going Riemann invariants respectively given by

R(U) = 2(
√
gh −

√
gh0) +

q

h
, L(U) = 2(

√
gh −

√
gh0)− q

h
.
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Discretization of the Model

Let us first rewrite the shallow water equations in a more compact form by
introducing U = (ζ, q)T :

∂tU + ∂x(F (U)) = 0,

with

F (U) = (q,
1

2
g(h2 − h2

0) +
q2

h
)T ,

Then the Lax-Friedrichs scheme for solving the above partial differential equation
is given by:

Un+1
i − 1

2 (Un
i+1 + Un

i−1)

∆t
+

F (Un
i+1)− F (Un

i−1)

2 ∆x
= 0

which implies

Un+1
i =

1

2
(Un

i+1 + Un
i−1)− ∆t

2 ∆x
(F (Un

i+1)− F (Un
i−1))
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Entry condition

Surface elevation ζ is given by ζ(x = −l , tn) = f (tn)← cosine

Horizontal discharge q can be derived by Left Riemann invariant L :

q = h(2(
√
gh −

√
ghs)− L)

After discretization, we have

qn|x=−l = (hs + f (tn))(2(
√
g(hs + f (tn))−

√
ghs)−

?︷ ︸︸ ︷
Ln|x=−l).

Discretizing the characteristic equation of L at x0 = −l , we have

Ln0 − Ln−1
0

δt
− λ−

Ln−1
1 − Ln−1

0

δx
= 0.

Thus, Ln|x=−l can be determined by

Ln0 = (1− λ−
δt
δx

)Ln−1
0 + λ−

δt
δx

Ln−1
1 .
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Discretization of discontinuous topography

Continuity of ζ and q: ζ l |x=0 = ζr |x=0; ql |x=0 = qr |x=0

Using Riemann invariants, we find two expressions of q describing ql |x=0 and
qr |x=0, respectively,

ql |x=0 = (hs + ζ l |x=0)
(
R l |x=0 − 2

(√
g(hs + ζ l |x=0)−

√
ghs
))

qr |x=0 = (h0 + ζr |x=0)
(

2
(√

g(h0 + ζr |x=0)−
√
gh0

)
− Lr |x=0

)
Set X =

√
h0 + ζ l |x=0, we derive a 5-th order polynomial equation

AX 5 + BX 4 + CX 3 + DX 2 + E = 0

where the coefficients depend on R l |x=0 and Lr |x=0, which can be determined by
their characteristic equations :

(R l)n0 =

(
1− λl

+
δt
δx

)
(R l)n−1

0 + λl
+
δt
δx

(R l)n−1
−1 ,

(Lr )n0 =

(
1− λr

−
δt
δx

)
(Lr )n−1

0 + λr
−
δt
δx

(Lr )n−1
+1
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Transmission conditions across the structure

JqK = 0 ; ql |l0−r = qi = qr |l0+r .

Using Riemann invariants, we find
ql |nl0−r = (h0 + ζ l |nl0−r )

(
R l |nl0−r − 2

(√
g(h0 + ζ l |nl0−r )−

√
gh0

))
;

qr |nl0+r = (h0 + ζr |nl0+r )
(

2
(√

g(h0 + ζr |nl0+r )−
√
gh0

)
− Lr |nl0+r

)
.

We discretize the second transmission condition

−αdqi
dt

=
Pch(t)

ρ
+

s
q2

2h2
+ gζ

{
.

(q)nl0−r = (q)n−1
l0−r −

δt

α

( (
(ql)n−1

l0+r

)2

2
(
h0 + (ζ l)n−1

l0+r

)2 −
(
(qr )n−1

l0−r
)2

2
(
h0 + (ζr )n−1

l0−r
)2

)

− δt

α

(
g(ζ l)n−1

l0+r − g(ζr )n−1
l0−r
)
− δt

ρα
Pn−1
ch .
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Wall condition at the end of the chamber

q(x = l1, t) = 0

using the right Riemann invariant we
have

0 = h(R − 2(
√
gh −

√
gh0)) ; ζ =

1

g
(
R

2
+
√
gh0)2 − h0 at x = l1

After discretization, we have

ζn|x=l1
=

1

g

(
Rn
|x=l1

2
+
√
gh0

)2

− h0

where Rn
|x=l1

is obtained by the discretized characteristic equations as before.
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Simulation
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Wave energy converter
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Thanks for your attention !
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