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Motivation: Oscillating water column (OWC)

OWC installed in 1990 at Trivandrum, India.

Flgu F€:. Taken from Falcao, Henriques, Renewable Energy, 2015.
OWC installed in Australia, about 2005.
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Reduce to two transmission problems
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Mathematical configuration

Incoming waves

Notations
@ ((x,t) is the surface elevation around the rest state;
@ h(x, t) is the fluid height (at rest hs before the step, hg after the step);
@ g(x, t) is the horizontal discharge (g = f_chm udz = hu);

@ P(x,t) is the surface pressure.
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Mathematical configuration

Incoming waves

Constraints and unknowns

e Exterior domain: € = £~ U&T UE," (domain before the step, before the
structure and inside the chamber):

P=PuminE UEY;, P = Pam + Pp(t)in &, (is unknown in &
o Interior domain Z = (ly — r, Iy + r): (under the structure):
P is unknown ¢ = Cw (constant in t and x).
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Mathematical configuration

Incoming waves

Previous results
@ D. Lannes, On the dynamics of floating structures, 2017;
E. Godlewski, M. Parisot, J. Sainte-Marie and F. Wahl, relaxation of the constraint, 2018;
T. lguchi and D. Lannes, 1D NSW equations, 2019;
E. Bocchi, for the 2D-radial NSW equations, 2019;
D. Maity, J. San Martin, T. Takahashi, M. Tucsnak, visous 1D NSW, 2019;
D
D

. Lannes, L. Weynans, boundary conditions for Boussinesq, 2019;

. Bresch, D. Lannes, G. Mérivier, for the 1D-Boussinesq and fixed solid, 2020.
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Derivation of the Model

Step 1 : Transmission problem near the Step
The motion of wave is described by the 1D shallow water equations :

O +0xqg=0 .
2 1 .
N X <Z) ) g = thop,, B T
P o

-0 .
h:hs+C7 P = Patm [
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Derivation of the Model

Step 1 : Transmission problem near the Step
The motion of wave is described by the 1D shallow water equations :

¢ +0xq=0 .
2 _
o Joara, <h)+gha<— Lho,p B T
' %,_/ " n
=0 .
h:hs+C7 P = Patm [
8t<+6xq:0

2
1
(C/'/Jr . 8:(]4’3 < h > +gh3xC = 7;haxpat1n: 0

h:h0+C7 P = Patm
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Derivation of the Model

Step 1 : Transmission problem near the Step
The motion of wave is described by the 1D shallow water equations :

¢ +0xq=0 .
2 _
o Joao <h)+gha<— L hoP [T T
' %,_/ "
=0 .
h:hs+C7 P = Patm [

H First transmission problem: ¢~ =¢ _ .,q _, =4q .
8t< + 6Xq = 0

2
1
(C/'/Jr . 8:(]4’3 < h > +gh3xC = 7;haxpat1n: 0

h:h0+C7 P = Patm
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Step 2 : Transmission problem near the Structure

8t< + 6><q =0 : (;)
2 Air

hzhO""Ca P = Pam ‘ -
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Step 2 : Transmission problem near the Structure

0:¢C+0xq=0 )
2 Air
. q Gl B
&' Bug+ by <h) L ghd( =0 T L
hzhO""Ca B:Patm ‘ -
0:¢(+0xqg=0
q° 1
R 0:q+ 0y (h) + ghdy( = —=hdP=0
P

h=ho+(, P = Pam+ Pen(t)

Wave-Structure interaction 30 mars 2022 7/30



Step 2 : Transmission problem near the Structure

O(+0xq=0 I
2

hzhO""Ca P = Pim ‘

Coupling conditions :

q(t,lo+r)=qi(t,lo£r)

ﬂContinuity of g
G = G~ DG = 0~ (%) = ai(t)

0:C+0xq=0

¢

1

gr+ : 8t.“q'i'ax () +gh6xC =
h p

h=ho+(, P = Pam + Pen(t)

hoxP= 0
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Step 2 : Transmission problem near the Structure

8t< + 6><q =0 ) ()
2 Air
& oo (%) + anoc =0 L
h:h0+<a B:Patm ’

Coupling conditions :

first transmission condition :

q(t,lo+r)=qi(t,lo£r) ~
tprr — i+ 3:[[CI]] =0

ﬂContinuity of g
G = G~ DG = 0~ (%) = ai(t)

0:C+0xq=0

e

1

gr+ 4 0:q + Ox () + ghox( = ——
h p

h=ho+(, P = Pam+ Pen(t)

hoxP= 0
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Step 3: Derive the second transmission condition near the Structure

Local energy :
Exterior : O¢text + Oxfext = Pair0xq;

7 I E
© text = pop + 8P and et =g (pﬁ +gp¢ + Pa,-,) :
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Step 3: Derive the second transmission condition near the Structure

Local energy :
Exterior : O¢text + Oxfext = Pair0xq;

7 I E
© text = pop + 8P and et =g (pﬁ +gp¢ + Pa,-,) :

Interior : O¢eing + Oxfing = 0.

5 2
o tw = pzi +rgy  and i = qiP.
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Step 3: Derive the second transmission condition near the Structure

Local energy :
Exterior : O¢text + Oxfext = Pair0xq;

7 I E
© text = pop + 8P and et =g (pﬁ +gp¢ + Pa,-,) :
Interior : O¢eing + Oxfint = 0.

5 2
o tw = pzi +rgy  and i = qiP.

Global energy :

Exterior : (’)t/ eext—i—ax/fext = / P.irOxq; Interior : Bt/ eim—i—ax/fint =0.
£ £ £ T T
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Step 3: Derive the second transmission condition near the Structure

Local energy :
Exterior : O¢text + Oxfext = Pair0xq;

7 I E
© text = pop + 8P and et =g (pﬁ +gp¢ + Pa,-,) :
Interior : O¢eing + Oxfint = 0.

5 2
o tw = pzi +rgy  and i = qiP.
Global energy :

Exterior : (’)t/ eext—i—ax/fext = / P.irOxq; Interior : Bt/ eim—i—ax/fint =0.
£ £ £ T T

We then have
ai’ (/ Cext + / Cint + Esol) + [[fint]] - [[fext]] = _[[Pairqﬂ = _quch~
& z

Remarque : [Pair] = (Patm + Peh) — Patm = Pen
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Step 3: Derive the second transmission condition near the Structure

The perturbation P, (t) satisfies the ODE (without damping) *
d 1 d

—PC = i — 7—P2 = iPC
dt h 714 2,71 dt ch diFch

where 1 is a known physical parameter.

1

(Jiao He) Wave-Structure interaction

The ODE of the Pressure is from ocean engineering literature : Dimakopoulos-Cooker-Bruce 2017, Falcdo-Henriques-Gato 2016:..
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Step 3: Derive the second transmission condition near the Structure

The perturbation P, (t) satisfies the ODE (without damping) *
d 1 d

—PC = i — 7—P2 = iPC
dt h 714 2,71 dt ch diFch

where 1 is a known physical parameter.

1
Ot </ Cext + / Cint + Esol + 2NP311> + [fine] — [fexe] = 0.
£ z V2
By fluid-solid energy conservation, we derive transmission condtion

[fint] — [fext] = 0.

1

The ODE of the Pressure is from ocean engineering literature : Dimakopoulos-Cooker-Bruce 2017, Falcdo-Henriques-Gato 2016:..
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Step 3: Derive the second transmission condition near the Structure

The perturbation P, (t) satisfies the ODE (without damping) *

d 1 d
—PC = i — 7—P2 = iPC
dt h 714 2,71 dt ch diFch

where 1 is a known physical parameter.

1
Ot </ Cext + / Cint + Esol + 2NP311> + [fine] — [fexe] = 0.
£ z V2
By fluid-solid energy conservation, we derive transmission condtion

[fint] — [fext] = 0.

Q [fine] =[aiP;] and 4q = *%Waxﬂ,- — 2rgq = *%W[[B,-]]
2
Q [[fext]] = HQ(P;? + ng + Pair):”

1

The ODE of the Pressure is from ocean engineering literature : Dimakopoulos-Cooker-Bruce 2017, Falcdo-Henriques-Gato 2016:..
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Step 3: Derive the second transmission condition near the Structure

The perturbation P, (t) satisfies the ODE (without damping) *

d 5

d
— P = 7116; EEPCh:quCh

dt

where 1 is a known physical parameter.

at </ Cext + / eint + Esol + — (h> + [[flntﬂ erxtﬂ =0.
£ z 2

By fluid-solid energy conservation, we derive transmission condtion

[fint] — [fext] = 0.

Q [fine] =[aiP;] and 4q = *%Waxﬂ,- — 2rgq = *%W[[B,-]]

2
Q@ [fexi] = [alogie +£0¢ + Pusr)]
We derive that

Pen(t)

q° 2r d
JFthZ‘L Cﬂ By e =0

The ODE of the Pressure is from ocean engineering literature : Dimakopoulos-Cooker-Bruce 2017, Falcdo-Henriques-Gato 2016:..

1
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Two transmission problems

3tC+8xq:0
In (—1,0): < 8:q+ 0 (ihz) 1 ghd¢ =0
h:hs"_CyB:Patm

First transmission problem (| Y = q o A =
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Two transmission problems

3tC+C?xq:0
In (—1,0): < 8:q+ 0 (ihz) 1 ghd¢ =0
h:hs"_CyE:Patm

First transmission problem (| Y = q o A =

0:C+0xq=0
In (0o —r): {0q+0: (%) +ghoC =0
h=ho+ (¢, P = Pam
Second trans. prob. [q] =0, (q)=gqi, where gqj, P, satisfy ODE
0:(+0xq=0
In o+ rh) s { 0q+0x () +ghd¢ =0
h=ho+¢, P= Patm + Pen(t)
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Two transmission problems

3tC+C?xq:0
In (—1,0): < 8:q+ 0 (i:) 1 ghd¢ =0
h:hs"_CyE:Patm

First transmission problem (| Y = q o A =

0:C+0xq=0
In (0o —r): {0q+0: (%) +ghoC =0
h=ho+ (¢, P = Pam
Second trans. prob. [q] =0, (q)=gqi, where gqj, P, satisfy ODE
0:(+0xq=0
In o+ rh) s { 0q+0x () +ghd¢ =0
h=ho+¢, P= Patm + Pen(t)

Transmission problems ~~ IBVP with semi-linear boundary conditions ?
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Reduction to an IBVP with semi-linear boundary conditions

Qctgrr =~ Amtp—r = [al =0 M+U\x:lg+r _M_le:IO—r = V(G(1))
1 B o =
2 (q\xw—r + q\x,,w,) =(9) =4 M are 2 x 2 constant matrices
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Reduction to an IBVP with semi-linear boundary conditions

Qctgrr =~ Amtp—r = [al =0 M+U\x:lo+r _M_le:IO—r = V(G(1))
1 . o =
2 (q\xw—r + q\x,,w,) =(9) =4 M are 2 x 2 constant matrices

Reformulate the system as

8:U + A(U)aU = 0 in (0,T)xR-,
0:U + A(U)aU = 0 in (0, T) x R*,
U,y = Us(x) on R_URy,
MU~ MU =V(G(t)) on (0,T).

where U, Up are R?-valued functions, A(U) is a 2 x 2 real-valued matrix, V(-) is a
R2-valued given function with V/(0) = 0 and G is a R2-valued function satisfying
the ODE.
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Quasilinear hyperbolic IBVP (with some diagonalizability) with semi-linear
boundary conditions

J A0 ith G=0(G u),
(PDE) U, , = Uo(X) wit (ODE)
Mu,_, = V(G(1)) G(0) = Go.
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Well-posedness

Wave-Structure interaction 30 mars 2022



Hyperbolic linear initial boundary value problems

Let us first consider a linear system of the form (with constant matrix)
) @ A: a 2 x 2 constant matrix with
Oru+ Adu=0 in (0,T) xRy, eigenvalues +)\. and

= U on Ry, eigenvectors ey ;

e v € R? and Kreiss—LopatinskiT
L, =G(t) on (0,T),

condition v - e} # 0;
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Hyperbolic linear initial boundary value problems

Let us first consider a linear system of the form (with constant matrix)

@ A: a 2 x 2 constant matrix with

Oru+ Adcu =10 in (0, T) xRy, eigenvalues £)4 and

Uy = Uo on R., eigenvectors ey ; )
e v € R? and Kreiss-Lopatinskii
veou,=G(t) on (0,7), condition v - ey # 0; Why ?
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Hyperbolic linear initial boundary value problems

Let us first consider a linear system of the form (with constant matrix)

@ A: a 2 x 2 constant matrix with

Oru+ Adcu =10 in (0, T) xRy, eigenvalues £)4 and

Uy = Uo on R., eigenvectors ey ; )
e v € R? and Kreiss-Lopatinskii
veou,=G(t) on (0,7), condition v - ey # 0; Why ?

Consider a general boundary condition
Mu,_, = G(t) on (0,T).

where M is a m x 2 real-valued matrix.
Applying the Laplace transform to the system

si+AdG=0, Mi=G at x=0.
Then the general solution is

(s, x) = i (s) exp(—s I x)ey + c_(s)exp(sA"'x)e_.
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Hyperbolic linear initial boundary value problems

Let us first consider a linear system of the form (with constant matrix)

@ A: a 2 x 2 constant matrix with

Oru+ Adcu =10 in (0, T) xRy, eigenvalues £)4 and

Uy = Uo on R., eigenvectors ey ; )
e v € R? and Kreiss-Lopatinskii
veou,=G(t) on (0,7), condition v - ey # 0; Why ?

Consider a general boundary condition
Mu,_, = G(t) on (0,T).

where M is a m x 2 real-valued matrix.
Applying the Laplace transform to the system

si+AdG=0, Mi=G at x=0.
Then the general solution is
(s, x) = i (s) exp(—s I x)ey + c_(s)exp(sA"'x)e_.

The boundary condition becomes (Me, )c; = Gom=1lwM=uvT,s0

— 1 =
= G ~ v-eL#0

V-e
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Kreiss symmetrizer: a matrix S such that SA is symmetric and
@ there exist constants ¢y, C; > 0 such that

alvl? < vTS(t,x)v < Gv|?;
@ there exist constants ¢, (; > 0 such that
v (S(1)A(1))

oV < —a|vP + Glv - v
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Kreiss symmetrizer: a matrix S such that SA is symmetric and
@ there exist constants ¢y, C; > 0 such that

alvl? < vTS(t,x)v < Gv|?;
@ there exist constants ¢, (; > 0 such that
v (S(1)A(1))

oV < —a|vP + Glv - v

[? energy estimate: multiplying equation O;u + Ad,u = 0 by S and taking the
L2((0, t) x R) scalar product with u, after integration by parts,

(Su(0)ule))s [ (SAu- ), = (St o)
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Kreiss symmetrizer: a matrix S such that SA is symmetric and
@ there exist constants ¢y, C; > 0 such that

alvl? < vTS(t,x)v < Gv|?;
@ there exist constants ¢, (; > 0 such that
v (S(1)A(1))

oV < —a|vP + Glv - v

[? energy estimate: multiplying equation O;u + Ad,u = 0 by S and taking the
L2((0, t) x R) scalar product with u, after integration by parts,

(Su(0)ule))s [ (SAu- ), = (St o)

Note that the trace —(SAu - u)|,_, cannot be controlled by the L?-norm of u.
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Kreiss symmetrizer: a matrix S such that SA is symmetric and

@ there exist constants ¢y, C; > 0 such that
alvl? < vTS(t,x)v < Gv|?;
@ there exist constants ¢, (; > 0 such that
VT(S(t)A(t))‘XZOV < —ovP+ Glr-vA

[? energy estimate: multiplying equation O;u + Ad,u = 0 by S and taking the
L2((0, t) x R) scalar product with u, after integration by parts,

(Su(0)ule))s [ (SAu- ), = (St o)

Note that the trace —(SAu - u)|,_, cannot be controlled by the L?-norm of u.
Kreiss symmetrizer is a symmetrizer such that the term —(SAu - u), _, has good
sign and the trace |u|,_[12(0,r) can be controlled up to terms that depends only on
vou,_, = G.

)]z + [l i20,6) < C(K0)e O (J[u(0)]]i2 + |Gl i2(0.1)) -
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Compatibility conditions
There are m necessary conditions for the existence of a solution of regularity
cmi([o, T] x Ry)

e m=1:v-u(0,0) = G(0)
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Compatibility conditions
There are m necessary conditions for the existence of a solution of regularity
cmi([o, T] x Ry)

e m=1:v-u(0,0) = G(0)

@ more generally, differentiating k-times the equation 0;u + Adxu = 0 with
respect to time, we have

Uyl i= 8f+1u = —&ﬂfu = —OyUy.
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Compatibility conditions
There are m necessary conditions for the existence of a solution of regularity
cmi([o, T] x Ry)

e m=1:v-u(0,0) = G(0)

@ more generally, differentiating k-times the equation 0;u + Adxu = 0 with
respect to time, we have

U1 = OF = —9,0Fu = 0, up.
o initial condition: wo k := uy|i=0
Uo,k+1 = Ugt1je=0 = —OxUo (1)
e boundary condition : v - ugx=0 = okG

V- Ug k|x=0 = df G\tZO (2)
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Compatibility conditions
There are m necessary conditions for the existence of a solution of regularity
cmi([o, T] x Ry)

e m=1:v-u(0,0) = G(0)

@ more generally, differentiating k-times the equation 0;u + Adxu = 0 with
respect to time, we have

Uyl i= 8f+1u = —&ﬂfu = —OyUy.
o initial condition: wo k := uy|i=0
Uo k41 = Ugs1je—0 = —OxUo k (1)
e boundary condition : v - uyx— = okG
V- Ug k|x=0 = ()f Gji=o (2)

Definition: Let m > 1. We say that the data up € H™(R;) and G € H™(0, T)
for the IBVP satisfy the compatibility condition at order m — 1 if {uo;}7, defined
in (1) satisfy (2) for k =0,1,--- ,m—1.

)
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Hyperbolic linear initial boundary value problems

deu+ A(t, x)0xu = 0 o A(t,x) is a 4 x 4 matrix
uj,_, = to(x) @ M is a 2 x 4 real-valued matrix

G(t) o G(t) is given;

2T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic linear initial boundary value problems

Beu + A(t, x)Oxu = 0 o A(t,x) is a 4 x 4 matrix
u,_, = to(x) @ M is a 2 x 4 real-valued matrix
Mu,_, = G(t) o G(t) is given;

o Kreiss symmetrizer: there exist constants ¢;, C; > 0 such that
alv)? < vTS(t,x)v < GIv[?
and there exist constants ¢, C; > 0 such that

vI(S(DA(L)) v < —calv]? + G MV[?

2T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic linear initial boundary value problems

Beu + A(t, x)Oxu = 0 o A(t,x) is a 4 x 4 matrix
u,_, = to(x) @ M is a 2 x 4 real-valued matrix
Mu,_, = G(t) o G(t) is given;

o Kreiss symmetrizer: there exist constants ¢;, C; > 0 such that
alv)? < vTS(t,x)v < GIv[?
and there exist constants ¢, C; > 0 such that
VT(S(t).A(t))‘X:ov < —o|v]? + GIMY)?

e For any t € [0, T], Lopatinskii matrix £(t) = ME (E is a matrix formed by
the corresponding eigenvectors) is invertible and || £(t) || < clT,

2T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic linear initial boundary value problems

Beu + A(t, x)Oxu = 0 o A(t,x) is a 4 x 4 matrix
u,_, = to(x) @ M is a 2 x 4 real-valued matrix
Mu,_, = G(t) o G(t) is given;

o Kreiss symmetrizer: there exist constants ¢;, C; > 0 such that
alv)? < vTS(t,x)v < GIv[?
and there exist constants ¢, C; > 0 such that
VT(S(t)A(t))‘XZOV < —o|v]? + GIMY)?

e For any t € [0, T], Lopatinskii matrix £(t) = ME (E is a matrix formed by
the corresponding eigenvectors) is invertible and || £(t) || < clT,

@ ug, G satisfy the compatibility conditions.

2T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic linear initial boundary value problems

Beu + A(t, x)Oxu = 0 o A(t,x) is a 4 x 4 matrix
u,_, = to(x) @ M is a 2 x 4 real-valued matrix
Mu,_, = G(t) o G(t) is given;

o Kreiss symmetrizer: there exist constants ¢;, C; > 0 such that
alv)? < vTS(t,x)v < GIv[?
and there exist constants ¢, C; > 0 such that
VT(S(t)A(t))‘XZOV < —o|v]? + GIMY)?

e For any t € [0, T], Lopatinskii matrix £(t) = ME (E is a matrix formed by
the corresponding eigenvectors) is invertible and || £(t) || < clT,
@ ug, G satisfy the compatibility conditions.

o Well-posedness 2 : a priori L% estimate; high-order estimates; existence and
uniqueness; existence of a Kreiss symmetrizer.

2T Iguchi, D Lannes. Hyperbolic free boundary problems and applications to wave-structure interactions, 2021
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Hyperbolic quasilinear initial boundary value problems

Oru+ A(u)dxu =0

Uy = UO(X) o
Muy_, = G(t) @ Kreiss-Lopatinskii condition

o G(t) is given;
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Hyperbolic quasilinear initial boundary value problems

Oru+ A(u)dxu =0

Uy = UO(X) o
Muy_, = G(t) @ Kreiss-Lopatinskii condition

o G(t) is given;

Sketch of proof of well-posedness.
Step 1. Choice of an iterative scheme.

atu”+1 + A(u”)@xu’”rl = 0
urth = uo(x) (3)

Muh = G(t)
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Hyperbolic quasilinear initial boundary value problems

Oru+ A(u)dxu =0
Uy = UO(X)

Mulx:o = G(t)

o G(t) is given;

° Kreiss—LopatinskiT condition

Sketch of proof of well-posedness.
Step 1. Choice of an iterative scheme.

atu”+1 + A(u”)@xu’”rl =0
upty = uo(x)

Muh = G(t)

@ we choose P as the first iterate
such that (05u®)—o = ug k. Then
(3) for IBVP (3) to the unknown u™?,
the ug, G satisfy the compatibility
conditions
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Hyperbolic quasilinear initial boundary value problems

Oru+ A(u)dxu =0

Uy = to(x) v
Mu,_, = G(t) @ Kreiss-Lopatinskii condition

o G(t) is given;

Sketch of proof of well-posedness.
Step 1. Choice of an iterative scheme.

o we choose 10 as the first iterate

Opu™t + A(u")O,u™t =0 such that (05u®)—o = ug k. Then

u\tol = up(x) 3) for IBVP (3) to the unknown u"*1,

Mu = 6(t) the up, G satisfy the compatibility
. conditions

Step 2. High-norm boundedness.

llu™llwom(Ty) + |u|,1:0|m7T1 <M, VneN.

Step 3. Low-norm convergence. One proves that the sequence u” is convergent in
L? and that the limit is in space W™ := (7, C/([0, T]; H™/(R.)), endowed
with the norm moo
lullwmiry = sup > hu(t)]pm-s. -
te[0,7T] =0
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Hyperbolic IBVP with semi-linear boundary conditions

atu + A(U)axu = 0 th G = (G7 uleo) ?
(PDE) q uj_, = uo(x) Wi (ODE)
Mo, = (1 G(0) = Gp.
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Hyperbolic IBVP with semi-linear boundary conditions

Oru + A(u)Oxu =0

Mulx:ﬂ = G(t)

(PDE) { u._, = up() with (ODE) {Z =©

Theorem (2021)

Let T > 0 and m > 2 be an integer. Suppose that uy € H™(R) and

Go € H™(0, T) satisfy the compatibility conditions up to order m — 1, then there

exist 0 < Ty < T and a unique solution (u, G) to (PDE-ODE) with

uc ﬁ ([0, T]; H™(Ry)) := W™(T) and G € H™?(0,T).

Jj=0

(Jiao He)
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Hyperbolic IBVP with semi-linear boundary conditions

Oru + A(u)Oxu =0 _
(PDE) { u._, = up() with (ODE)
Muy_, = G(t) G(0) = Go.

Theorem (2021)

Let T > 0 and m > 2 be an integer. Suppose that uy € H™(R) and
Go € H™(0, T) satisfy the compatibility conditions up to order m — 1, then there
exist 0 < Ty < T and a unique solution (u, G) to (PDE-ODE) with

uc ﬁ ([0, T]; H™(Ry)) := W™(T) and G € H™?(0,T).
j=0

Key ingredients needed:
° Kreiss—LopatinskiT conditions (LopatinskiT matrix is invertible), compatibility
conditions;
o lterative scheme (PDE and ODE), uniform bounds, convergence;
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Hyperbolic IBVP with semi-linear boundary conditions

Oru + A(u)Oxu =0 _
(PDE) { u._, = up() with (ODE)
Mu_, = G(t) 6(0) = Go.

Theorem (2021)

Let T > 0 and m > 2 be an integer. Suppose that uy € H™(R) and
Go € H™(0, T) satisfy the compatibility conditions up to order m — 1, then there
exist 0 < Ty < T and a unique solution (u, G) to (PDE-ODE) with

uc ﬁ ([0, T]; H™(Ry)) := W™(T) and G € H™?(0,T).
j=0

Key ingredients needed:
° Kreiss—LopatinskiT conditions (LopatinskiT matrix is invertible), compatibility
conditions;
o lterative scheme (PDE and ODE), uniform bounds, convergence;
@ Estimates for G and the trace u_,
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Goal: boundedness of (u”, G") in W™(T) x H™(0, T);
convergence of (u", G") in W™=1(T) x H™1(0, T).
Recall that

()l + 1) o |m,e < C(Ko)e O (u(0)l|rm + [ Gllm(o,e) -
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Goal: boundedness of (u”, G") in W™(T) x H™(0, T);
convergence of (u", G") in W™=1(T) x H™1(0, T).
Recall that

()l + 0y, ol < C(Ko)e P (u(0) I + (Gl m(o,e) -

o lterative scheme of ODE
¢l=0 (G", ul"xzo) . G™H0) = Gy
@ Uniform bounded. By G"*1(t) = Gﬁfol + 5 ©(G"(s),u"(s)) ds, we have
1G™ [0, 11y S V/ T21O(G", ul_)lHmo, 1)
< VTiCo (116”0, + 4 |m.7:)
o Convergence.

16" = G || m-10,73)

SV TiCo (IG" = G" Mipm—r(o, 1) + (0" = u" 1) o m-1.72) -
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Numerical scheme and discretization of BCs
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Riemann invariants

1D Nonlinear shallow water equations in a compact form are given by

q

B ) (¢ B 0 1

with eigenvalues

A (U) = /gh + % >0, —A_(U)=—/gh+ %

Taking the scalar product of the eq. with the associated eigenvectors, we obtain
two transport equations

BR(U) + A (U)BR(U) =0,  9,L(U) — A_(U)dxL(U) =0,

for the right-going and left-going Riemann invariants respectively given by

R(U) = 2(\/gh— /gho) + 7. L(U) = 2(~/gh — \/gho) — 7.
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Discretization of the Model

Let us first rewrite the shallow water equations in a more compact form by
introducing U = (¢, q)" :

with
1 2 2 CI2 T
F(U) = (9, 58(h" — hg) + )7,

(Jiao He)

Wave-Structure interaction

30 mars 2022 23 /30



Discretization of the Model

Let us first rewrite the shallow water equations in a more compact form by
introducing U = (¢, q)7 :

0rU + 0,(F(U)) =0,
with
_ 1 2 2 CI2 T
F(U) = (9, 58(h" — hg) + )7,

Then the Lax-Friedrichs scheme for solving the above partial differential equation
is given by:

Up™ = 3(Uh + UP) | F(UR) — F(UE)

At 2 Ax =0

which implies

n 1 n n At n n
urtt = E(Ui+1 +U,) - E(F( m1) — F(ULY))
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Entry condition

@ Surface elevation ¢ is given by ((x = —/,t") = f(t") + cosine

@ Horizontal discharge g can be derived by Left Riemann invariant L :

q = h(2(\/gh— \/ghs) — L)
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Entry condition

@ Surface elevation ¢ is given by ((x = —/,t") = f(t") + cosine

@ Horizontal discharge g can be derived by Left Riemann invariant L :

2(\/gh — \/ghs) — L)

After discretization, we have

?

—
q"|x=—1 = (hs + £(£"))(2(v/ g (hs + £(t")) — /&hs) — L"|x=—1).
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Entry condition

@ Surface elevation ¢ is given by ((x = —/,t") = f(t") + cosine

@ Horizontal discharge g can be derived by Left Riemann invariant L :

2(\/g - \/ghs)fL)
After discretization, we have

?
—
"l = (hs + F(£"))(2(v/2(hs + F(E7)) — Vghs) — L")

Discretizing the characteristic equation of L at xg = —/, we have

Lg—tLgt \ Lttt

3 5 =0.

Thus, L"|x——_/ can be determined by

5¢
G=(-23
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Discretization of discontinuous topography

e Continuity of ¢ and g: ¢/[—0 = ¢"|x=0; ¢'|x=0 = 9" |x—o0
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Discretization of discontinuous topography

e Continuity of ¢ and g: ¢/[—0 = ¢"|x=0; ¢'|x=0 = 9" |x—o0
Using Riemann invariants, we find two expressions of g describing g'|x—o and
q"|x=o0, respectively,

0 = (he + ¢'0) (R'lemo — 2(y/ &1 + o) = V&)
@"lo = (o + ¢'[0) (2(V/&(ho + C i) — Vo) — L'l.0)
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Discretization of discontinuous topography

e Continuity of ¢ and g: ¢/[—0 = ¢"|x=0; ¢'|x=0 = 9" |x—o0
Using Riemann invariants, we find two expressions of g describing g'|x—o and
q"|x=o0, respectively,

q/|X:O - (hs + Cl|x:0)(Rl|x:0 - 2(\/ g(hs + Cl‘x:O) - \/ﬁ))
@"lo = (o + ¢'[0) (2(V/&(ho + C i) — Vo) — L'l.0)

Set X = \/hg + (!|x—0, we derive a 5-th order polynomial equation
AX® +BX*+ CX*+DX?*+E=0

where the coefficients depend on R'\X:o and L"|x—o,
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Discretization of discontinuous topography

e Continuity of ¢ and g: ¢/[—0 = ¢"|x=0; ¢'|x=0 = 9" |x—o0
Using Riemann invariants, we find two expressions of g describing g'|x—o and
q"|x=o0, respectively,

q/|X:O - (hs + Cl|x:0)(Rl|x:0 - 2(\/ g(hs + Cl‘x:O) - \/ﬁ))
@"lo = (o + ¢'[0) (2(V/&(ho + C i) — Vo) — L'l.0)

Set X = \/hg + (!|x—0, we derive a 5-th order polynomial equation
AX® +BX*+ CX*+DX?*+E=0

where the coefficients depend on R’|,—o and L"|,—o, which can be determined by
their characteristic equations :

1 Ot

0 _ ne
(R = (123 ) (RO 4 AL (RS,

ryn r 0 ryn— r 0 ryn—
(%= (1= 303 ) W xSyt
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Transmission conditions across the structure

o [q]=0 ~ qlb—r=a=qpr
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Transmission conditions across the structure

o fal=0 ~ d'lhr=0a=qpr
Using Riemann invariants, we find

dli 0 = o+l (R, —2(y/elho + 117 ) — Vo) )
0"l = (ho+ 1) (2o + C717.) = Vaho) = L'l ).
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Transmission conditions across the structure

o fal=0 ~ d'lhr=0a=qpr
Using Riemann invariants, we find

dli 0 = o+l (R, —2(y/elho + 117 ) — Vo) )
0"l = (ho+ 1) (2o + C717.) = Vaho) = L'l ).

@ We discretize the second transmission condition

dl PClt 2
q 1()+Hq

“Yar T 2h2

+ géﬂ

(@h-r = (q)gj

st ( (@)’ (@)’ )
(ho + (C )l0+r)2 (ho + (C )/0 r)2

ot

po

( (s —8(C ) — P&
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Wall condition at the end of the chamber

o g(x=~h,t)=0
@ using the right Riemann invariant we
have

1R
0:h(R*2(\/g7hf\/gh0))’\/>C:§(§+ gho)tho atx:ll
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Wall condition at the end of the chamber

o g(x=~h,t)=0
@ using the right Riemann invariant we
have

1R
0:h(R*2(\/g7hf\/gh0))’\/>C:§(§+ gho)tho atx:ll

After discretization, we have

n 1 R‘Z*’l ’
sz/l - E T + ghO - hO

where Rl" . is obtained by the discretized characteristic equations as before.
X=I
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Simulation
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Wave energy converter
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Thanks for your attention !
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