JournEES EDP pE L'IECL 2022

Camouflage d’obstacles dans des guides d’ondes

acoustiques au moyen de ligaments fins résonants

| Lucas Chesnel |

Coll. with J. Heleine!, S.A. Nazarov?.

'IDEFIX team, Inria/Institut Polytechnique de Paris/EDF, France
2FMM, St. Petersburg State University, Russia

V4

lrrzia—

NANCY, 28/03/2022

ENSTA



Introduction 1/3

» We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

Au+k?u = 0 inQ,

(#) Oput 0 on 09

Lo

» We fix k € (0;7) so that only the plane waves e***® can propagate.
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Introduction 1/3

» We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

Au+Kku = 0 inQ,
Iy_)x L A (£) Opu = 0 ondQ

» We fix k € (0;7) so that only the plane waves e***® can propagate.

» The scattering of these waves leads us to consider the solutions of (&)
with the decomposition

e*kr L R et T ety . T — —00

(T— . U_ = s .
* T etike 4 e~thr L R etikz 4 T — 400

Ry, T € C are the scattering coefficients , the ... are expon. decaying terms.
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Introduction 2/3

» We have the relations of conservation of energy |R+|* + |T|? =1

- Without obstacle, uy = e** so that (Ry,T) =

- With an obstacle, in general (R4, T) # (0,1).
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Introduction 2/3

» We have the relations of conservation of energy |R+|* + |T|? =1

- Without obstacle, uy = e** so that (Ry,T) =

- With an obstacle, in general (R4, T) # (0,1

INEREREES 1
a 1

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain Ry = 0,7 =1
in the new geometry (as if there were no obstacle) = cloaking at “infinity”.

35



Introduction 3/3

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.
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:i Difficulty: the scattering coefficients have a non explicit and non

linear dependence wrt the geometry.

Remark 1: Different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).

— Less ambitious but doable without fancy materials
(and relevant in practice).
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Introduction 3/3

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.

Remark 1: Different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).

— Less ambitious but doable without fancy materials
(and relevant in practice).

Remark 2: Different from the perturbative techniques we have used in the
past based on variants of the implicit functions theorem.

__-__ -h@)
R=0 R=0

Here the (big) obstacle is given, we want to compensate its scattering.
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Outline of the talk

o Asymptotic analysis in presence of thin resonators

e Almost zero reflection

e Cloaking

@ Mode converter
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e Asymptotic analysis in presence of thin resonators
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Setting

\ 7

\9:‘ ‘ Main ingredient of our approach: outer resonators of width e < 1.
S

4

Au+k?u=0 in Q°,

(79 Opu =0 on 90N°

» In this geometry, we have the scattering solutions

TE e~k T — —00

eikw + Ri e—ikz + L. -
e~k { Re etike 4 T — +00

u- =

us = ;
+ T etike -
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Setting

\9\’_ ‘ Main ingredient of our approach: outer resonators of width e < 1.
S

Au+k?u=0 in Q°,

(79 Opu =0 on 90N°

» In this geometry, we have the scattering solutions

TE e~k T — —00

eikw + R_E'— e—ikw + L. -
e~k { Re etike 4 x — 400

u- =

us = ;
+ T etike -

In general, the thin ligament has only a weak influence on the scattering
coefficients: RS ~ Ry, T° ~T. But not always ...
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Numerical experiment

» We vary the length of the ligament:

L=0.125
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Numerical experiment

» For one particular length of the ligament, we get a standing mode (zero
transmission):

AN
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Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of ug, RT, T¢ as € — 0.

Auf + k2uﬁ_ =0 in Q°,

(#°) Opui =0 on 0Q°

eik:{: + Ri e—ik:c 4+
Teetibr 4

[S—
u_,_—

» To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlovet al. 94, Nazarov96, Maz’yaet al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18, ... )
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Asymptotic analysis

» We work with the outer expansions
us (z,y) = ul(z,y) + ... in €,
u® (z,y) =c v (y) +v°(y) +... in the resonator.
» Considering the restriction of (#¢) to the thin resonator, when e tends
to zero, we find that v~! must solve the homogeneous 1D problem
v+ kv =0 in (1;1+¢)

(#1p) v(1) = d,u(l +£) = 0.
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The features of (Z71p) play a key role in the physical phenomena
E and in the asymptotic analysis.
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Asymptotic analysis

» We work with the outer expansions
us (z,y) = ul(z,y) + ... in €,
u® (z,y) =c v (y) +v°(y) +... in the resonator.

» Considering the restriction of (#¢) to the thin resonator, when e tends
to zero, we find that v~! must solve the homogeneous 1D problem

v+ kv =0 in (1;1+¢)

(#1p) v(1) = d,u(l +£) = 0.

The features of (Z71p) play a key role in the physical phenomena
E and in the asymptotic analysis.

» We denote by 4,5 (resonance lengths) the values of ¢, given by
lres := (M +1/2) /K, m € N,

such that (£%1p) admits the non zero solution v(y) = sin(k(y — 1)).




Asymptotic analysis — Non resonant case

» Assume that £ # f.es . Then we find v=! = 0 and when € — 0, we get

ug(z,y) = ux +o(1) in €,
ug (z,y) = us(A)vo(y) + o(1) in the resonator,

S = Ry +o0(1), Ts =T +o(1).

Here vo(y) = cos(k(y — 1) + tan(k(y — £) sin(k(y — 1).
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Asymptotic analysis — Non resonant case

» Assume that £ # f.es . Then we find v=! = 0 and when € — 0, we get

ug (z,y) = usr +o(1) in Q,
ug (z,y) = us(A)vo(y) + o(1) in the resonator,

< = Ry +o(1), Te = [ + o(1).

Here vo(y) = cos(k(y — 1) + tan(k(y — £) sin(k(y — 1).

The thin resonator has no influence at order £°.

RL=0+...

— Not interesting for our purpose because we want Te— 14
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Asymptotic analysis — Resonant case

» Now assume that £ = fres. Then we find v=1(y) = asin(k(y — 1)) for
some a to determine.
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Asymptotic analysis — Resonant case

» Now assume that £ = fres. Then we find v=1(y) = asin(k(y — 1)) for
some a to determine.

» Inner expansion. Set £ = e~1(x — A) (stretched coordinates). Since
(Ax + E)us (e Hx — A)) = e 2Agu(€) + ...,
when € — 0, we are led to study the problem

(*) —AEY = 0 in E
0,Y =0 on 0=.
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—
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Asymptotic analysis — Resonant case

» Now assume that £ = fres. Then we find v=1(y) = asin(k(y — 1)) for

some a to determine.

» Inner expansion. Set £ = e~ !(x — A) (stretched coor(linatﬁs). Since
(Ax +k)us (e (x— A) = 2Acu (&) + ...,

when € — 0, we are led to study the problem

(*) —AEY =0 in= O
d0,Y =0 on0=.

(1]

» Problem (%) admits a solution Y (up to a constant) with the expansion
&y +C=+0(e ™)  asé, — +oo, £€ET

Yi©=9q 1 1 1 _
;lnEJrO(m) as [{| = +o0, £€E".
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Asymptotic analysis — Resonant case

» Now assume that £ = fres. Then we find v=1(y) = asin(k(y — 1)) for
some a to determine.

» Inner expansion. Set £ = e~ !(x — A) (stretched coordinates). Since
| |

(Ax +k)us (e (x— A) = 2Acu (&) + ...,

=+
when € — 0, we are led to study the problem = -
—AY =0 inZE i é )
(*) 0,Y =0 on0d=. =

» Problem (%) admits a solution Y (up to a constant) with the expansion
&y +C=+0(e ™)  asé, — +oo, £€ET

Yi©=9q 1 1 1 _
;lnEJrO(m) as [{| = +o0, £€E".

» In a neighbourhood of A, we look for u5 of the form

u (2) = CAY(E) + e + ... (c#, C# constants to determine).
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» Now assume that £ = fres. Then we find v=1(y) = asin(k(y — 1)) for
some a to determine.

» Inner expansion. Set £ = e~1(x — A) (stretched coordinates). Since
| |

» Problem (%) admits a solution Y (up to a constant) with the expansion

&y +C=+0(e ™)  asé, — +oo, £€ET

Yi©=9q 1 1 1 _
;lnEJrO(m) as [{| = +o0, £€E".

» In a neighbourhood of A, we look for u5 of the form

u (z) = ak Y (&) + e + ... (c?, C# constants to determine).
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Asymptotic analysis — Resonant case

» In the ansatz u§ = u’ + ... in Q, we deduce that we must take

u® = ug + aky

where 7 is the outgoing Green function such that | Ay +k%y =0in Q
Ony =64 on 0.
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Asymptotic analysis — Resonant case

» In the ansatz u§ = u’ + ... in Q, we deduce that we must take
u® = ug + aky

where 7 is the outgoing Green function such that | Ay +k%y =0in Q
Ony =64 on 0.

» Then in the inner field expansion v () = ak Y(£) + ¢ + ..., this sets

¢ = uy(A) +ak(l + 7 n ).

» Matching the constant behaviour in the resonator, we obtain

v9(1) = uy (A) + ak(T + 7~ tn|e| + Cz).
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Asymptotic analysis — Resonant case

» In the ansatz u§ = u’ + ... in Q, we deduce that we must take
u’ = uy + aky

where 7 is the outgoing Green function such that | Ay +k%y =0in Q
Ony =64 on 0.

» Then in the inner field expansion u% () = akY1(£) + ¢ + ..., this sets
A =uy(A) +ak(T +7 " Inle]).
» Thus for v°, we get the problem
200 + k%00 =0 in (1;1+¢)
(1) = ug (A) + ak(T + 7 nle| + Cz), 0yv°(1+¢) = 0.
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Asymptotic analysis — Resonant case

» In the ansatz u§ = u’ + ... in Q, we deduce that we must take

u’ = uy + aky

where 7 is the outgoing Green function such that | Ay +k%y =0in Q
Ony =64 on 0.

» Then in the inner field expansion u% () = akY1(£) + ¢ + ..., this sets
A =uy(A) +ak(T +7 " Inle]).

» Thus for v°, we get the problem
200 + k%00 =0 in (1;1+¢)
v9(1) = uy (A) + ak(T + 7 tIn|e| + C=), 0yv°(1+¢) = 0.
» This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets
_ u(A)
'+ 7= tlnle|+ C=

ak =

and ends the calculus of the first terms.
14 / 35



Asymptotic analysis — Resonant case

» Finally for £ = /f,es, when ¢ — 0, we obtain

ui (7, y) = uy(z,y) + aky(z,y) +o(1) inQ,
u%(z,y) = e tasin(k(y — 1)) + O(1)  in the resonator,

R = Ry + dauy (A)/2 +o(1), T =T+ tau_(A)/2 + o(1).

Here ~ is the outgoing Green function such that | Av +k*y=0inQ and
Ony = d4 on 02

uy(A)

k=— .
“ '+ 7= tlnle| + C=
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Asymptotic analysis — Resonant case

» Finally for £ = /f,es, when ¢ — 0, we obtain

ui (7, y) = up(z,y) + aky(z,y) +o(1) inQ,
u%(z,y) = e tasin(k(y — 1)) + O(1)  in the resonator,

RS = Ry + dauy(A)/2 +o(1), T¢ =T+ tau—_(A)/2 + o(1).

Here ~ is the outgoing Green function such that | Av +k*y=0inQ and
Ony = d4 on 02

ak — — uy(A)
F+allnle|+Cs’
00 This time the thin resonator has an influence at order £°
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Asymptotic analysis — Resonant case

» Similarly for ¢ = l.es +en with € R fixed, by modifying only the last
step with the compatibility relation, when € — 0, we obtain

us (z,y) = uy (v, y) + a(n)ky(z,y) +o(1) inQ,

u® (z,y) = e ta(n)sin(k(y — 1)) + O(1)  in the resonator,

RE = Ry + da(n)us(A)/2 +0(1), T¢ =T+ ia(n)u—_(A)/2 + o(1).

Here ~ is the outgoing Green function such that | Av+k*y=0inQ and
Ony =064 on 00

uy(A)

k=— .
a(n) F'+7tlnle|+C=+1n
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Asymptotic analysis — Resonant case

» Similarly for ¢ = l.es +en with € R fixed, by modifying only the last
step with the compatibility relation, when € — 0, we obtain

us (z,y) = uy (v, y) + a(n)ky(z,y) +o(1) inQ,

u® (z,y) = e ta(n)sin(k(y — 1)) + O(1)  in the resonator,

RE = Ry + da(n)us(A)/2 +0(1), T¢ =T+ ia(n)u—_(A)/2 + o(1).

Here ~ is the outgoing Green function such that | Av+k*y=0inQ and
Ony =064 on 00

_ uy(A)
a(mk = — .
IF'+7llnle|+C=+n
00 This time the thin resonator has an influence at order £°
~ and it depends on the choice of 7!

16 / 35



Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(g,bres + €(n — 7 Y 1Ineg|)), e > 0} C R2

> €<
lres ¢ /(
~Ix
A

g

zl According to 7, the limit of the scattering coefficients along
the path as ¢ — 0T is different.
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» Below, for several € R, we display the paths
{(g,bres + €(n — 7 Y 1Ineg|)), e > 0} C R2

gres

gl According to 7, the limit of the scattering coefficients along
the path as ¢ — 0T is different.

» For a fixed small ¢, the scattering coefficients have a rapid variation for
£ varying in a neighbourhood of the resonance length.
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Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(g,bres + €(n — 7 Y 1Ineg|)), e > 0} C R2

gres

)

0

EI According to 7, the limit of the scattering coefficients along
the path as ¢ — 0T is different.

» For a fixed small ¢, the scattering coefficients have a rapid variation for
£ varying in a neighbourhood of the resonance length.

— This is exactly what we observed in the numerics. -



Q Almost zero reflection

Varying the length of the ligament around the reso-
nant lengths, we can get a rapid and large variation
of the scattering coefficients.

— How to use that to get zero reflection 7
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Almost zero reflection
» We have found Ry = RY(n) +o(1), T°=7T%n)+o(1) with

(2ik) 1 uy (A)? (2ik) " uy (A)u—(A)

R.(n)=R () =T :
+0m) ++F+7T*11n|6|+05+77’ () +F+7T711H|5|+CE+77

vp . az+b
» Results on Mobius transform (z — cz+d)

guarantee that {R% (1) |n € R}, {T%(n) |n € R}
are circles in C.
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Almost zero reflection
» We have found Ry = RY(n) +o(1), T°=7T%n)+o(1) with

(2ik) ) s (A4)? (2ik) ™ u (A)u_(A)

RYo(n) =R O(n) = :
+() ++F+7T*11n|€| +C=+7 ( F+atlnle|+C=z +1n

vp . az+b
» Results on Mobius transform (z — cz+d)

guarantee that {R% (1) |n € R}, {T%(n) |n € R}
are circles in C.

g Asymptotically, when the length of the resonator is perturbed
around the resonance length, R7, T° run on circles.
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Almost zero reflection
» We have found Ry = RY(n) +o(1), T°=7T%n)+o(1) with

(2ik) ™" uy (A)? (2ik) ™" uy (A)u_(4)

RY(n)=R T°(n) =T .
+() ++F+7r*11n|5|+05+77’ () +F+7r*11n|5|+05+77

vp . az+b
» Results on Mobius transform (z — cz+d)

guarantee that {R% (1) |n € R}, {T%(n) |n € R}
are circles in C.

g Asymptotically, when the length of the resonator is perturbed
around the resonance length, R7, T° run on circles.

» Interestingly, the features of the circles depend on the position A of the
ligament.
19 / 35



Almost zero reflection

slit[0].x: -0.500000
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Almost zero reflection

slit[0].x: -0.500000

» Using the expansions of uy(A) far from the obstacle, one shows:

PROPOSITION: There are positions of the resonator A such that the circle
{R%(n) |n € R} passes through zero.




Almost zero reflection

slit[0].x: -0.500000

» Using the expansions of uy(A) far from the obstacle, one shows:

PROPOSITION: There are positions of the resonator A such that the circle
{R%.(n) |n € R} passes through zero. = I situationss.t. RS =0+ o(1).
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Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.3).

B L B

Re (uf. — eth?) A‘ ' l

Simulations realized with the Freefem++ library.
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Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.01).
Re (uf, — i*®) ..‘ ' I

Stmulations realized with the Freefem++ library.
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Almost zero reflection

» Example of situation where we have almost zero reflection (¢ = 0.01).

Re (ug, — <) el

Stmulations realized with the Freefem++ library.

Conservation of energy guarantees that when RS =0, |T¢| = 1.
— To cloak the object, it remains to compensate the phase shift!
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e Cloaking
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Phase shifter

» Working with two resonators, we can create phase shifters, that is
devices with almost zero reflection and any desired phase.

SCHEME OF THE METHOD:

FIRTAIN

Step 1: with one ligament, we get
some Ri, T1 as above.
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Phase shifter

» Working with two resonators, we can create phase shifters, that is
devices with almost zero reflection and any desired phase.

SCHEME OF THE METHOD:

BIAYEIE IATARNIE

Step 1: with one ligament, we get Step 2: adding a second ligament,
some Ri, T1 as above. we can get Ro, 15 as above.

23 / 35



Phase shifter

» Working with two resonators, we can create phase shifters, that is
devices with almost zero reflection and any desired phase.

IAARNIE
INININIE

» Here the device is designed to obtain a phase shift approx. equal to 7/4.

23 / 35



Cloaking with three resonators

» Now working in two steps, we can approximately cloak any object with
three resonators:

1) With one resonant ligament, first we get almost zero reflection;

2) With two additional resonant ligaments, we compensate the phase shift.

IR

RNeuy

FAvLNININE
.

-

Re (ug — etke)
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Cloaking with two resonators

» Working a bit more, one can show that two resonators are enough to

cloak any object.

add one ligament so that the corresponding transmission circle,

Step 1:
which passes through zero and Ty, crosses % (1/2,1/2) \ {0}.
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Cloaking with two resonators
» Working a bit more, one can show that two resonators are enough to

cloak any object.

Step 1: add one ligament so that the corresponding transmission circle,
which passes through zero and Ty, crosses % (1/2,1/2) \ {0}.

25 / 35

Step 2: fix the length of the first ligament so that 77 € ¥(1/2,1/2) \ {0}.



Cloaking with two resonators

» Working a bit more, one can show that two resonators are enough to

cloak any object.

Step 1: add one ligament so that the corresponding transmission circle,
which passes through zero and Ty, crosses % (1/2,1/2) \ {0}.

Step 2: fix the length of the first ligament so that 77 € ¥(1/2,1/2) \ {0}.
Step 3: add a second ligament and tune its position as well as its length to

get To = 1 (this is doable because of the value of T1).
25 / 35



Cloaking with two resonators

» Working a bit more, one can show that two resonators are enough to
cloak any object.

£ Bt )oY n .

Il'-‘” .‘II

t — Re (u+(m y)e k)

t — Re (etF(@—1))
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@ Mode converter
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Mode converter - goal

» We work at higher k (€ (m;27)) so that two modes can propagate:

wi(z,y) = P01 (y),  wi(z,y) =TTy (y).

» Now we have the two scattering solutions

(2, y) = wf(m—i—l/?,y)—&—Z? (riw; (x4 1/2,y) + ... on the left
e ZZ T j( x—1/2,y)+ ... on the right
(zy) = w;(m—l—l/Q,y)—l—Ej 175wy (x4 1/2,y) + ... on the left
N Z 1 155 j( x—1/2,y)+ ... on the right.

» We define the reflection and transmission matrices
,rg ,rE tE tE
Ra:< 11 12) Ta:<11 12>.
T3 T th 15
Goal: find a geometry such that:
1) energy is completely transmitted RE ~ ( 0 0 ) T ( 0 1 )
2) mode 1 is converted into mode 2 0 0 Lo

28' / 35



Mode converter - geometry

» We decide to work in the following geometry with thin ligaments:

l"\
wl""ll\) ‘N
J

~

wmwwwwen Lo e

.---l\\( -
J

» This may seem paradoxical because in general in this €2, energy is
mostly backscattered:

Rez((l)(l)) TE%(88>

=
Re uy
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Mode converter - exploiting symmetry

» We impose €2 to be symmetric wrt the (Oy) axis. Then we can show that

_Ry+Ry . Ry-FRp

Re
2 2

where R}, R}, are the reflection matrices of the problems

Ausy + k*us, = 0 in w® Aus + k*us, = 0 in w®
(2%) dyufy = 0 on dw® \ ¢ (25 0,u5 = 0 on Jwe \ X°
Oyufy = 0 on X¢ up = 0 on X°

set in the half-waveguide w® (here X° := dw® \ 9Q°):
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Mode converter - asymptotic analysis

» In the asympt. analysis of (27%), (275), we meet the 1D problems:

Pv+k*w=0 1in (0;¢+) v +k*v =0 in (0;04)

(P | (o) = Bysex) = o 0(0) = v(le) = 0

(P5)

(s | We choose k€ = mm and kf_ = (m + 1/2)m. In this situation:
\9\‘ - L is resonant for the Neumann pb. but not for the Dirichlet one;
S

- L% is resonant for the Dirichlet pb. but not for the Neumann one.
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Mode converter - asymptotic analysis

» In the asympt. analysis of (27%), (275), we meet the 1D problems:

Pv+k*w=0 1in (0;¢+) v +k*v =0 in (0;04)

(P | (o) = Bysex) = o 0(0) = v(le) = 0

(P5)

(s | We choose k€ = mm and kf_ = (m + 1/2)m. In this situation:
\@\‘ - L is resonant for the Neumann pb. but not for the Dirichlet one;
N

=

- L% is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L% acts at order €% while L? acts at higher order.

For the Dirichlet pb., L% acts at order £° while L% acts at higher order.

= The action of the two ligaments decouple at order £°.
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Mode converter - asymptotic analysis

» In the asympt. analysis of (27%), (275), we meet the 1D problems:

Pv+k*w=0 1in (0;¢+) v +k*v =0 in (0;04)

v(0) = Byu(le) = 0 P5) | (o) = B(2) = 0

(P)

(s | We choose k€ = mm and kf_ = (m + 1/2)m. In this situation:
\@\‘ - L is resonant for the Neumann pb. but not for the Dirichlet one;
N

=

- L% is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L% acts at order €% while L? acts at higher order.
For the Dirichlet pb., L% acts at order £° while L% acts at higher order.

= The action of the two ligaments decouple at order £°.

» With the explicit representation provided by the asymptotic analysis (as
for cloaking), we can find positions and lengths of the ligaments such that

01 " 0 -1 , . .
N = + D = + — 0.
N <10) ) D (_1 0) o(1) when ¢
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Mode converter - results

» Thus tuning precisely the positions and lengths of the ligaments, we can
ensure absence of reflection and mode conversion:

\
tHRe(uie—iwt)I.I.I. r "---
\ ,\----

-

f
o
----t”

-
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0 Asymptotic analysis in presence of thin resonators

© Almost zero reflection

e Cloaking

@ Mode converter
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Conclusion

What we did

& We explained how to cloak any object in monomode regime and to
design mode converters using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order € with perturb. of width «.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.
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Conclusion

What we did

& We explained how to cloak any object in monomode regime and to
design mode converters using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order € with perturb. of width «.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.

Possible extensions and open questions ‘

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin
structures are resonant at one wavenumber otherwise act at order ¢).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T' = 1 exactly)? This question is also
related to robustness of the device.
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Thank you for your attention!

@ L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin
resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.

@ L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. ZAMP, to appear, 2022.
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