
Journées EDP de l’IECL 2022

Camouflage d’obstacles dans des guides d’ondes
acoustiques au moyen de ligaments fins résonants

Lucas Chesnel

Coll. with J. Heleine1, S.A. Nazarov2.

1IDEFIX team, Inria/Institut Polytechnique de Paris/EDF, France
2FMM, St. Petersburg State University, Russia

Nancy, 28/03/2022



Introduction 1/3

▶ We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ We fix k ∈ (0; π) so that only the plane waves e±ikx can propagate.

▶ The scattering of these waves leads us to consider the solutions of (P)
with the decomposition

u+ = eikx + R+ e−ikx + . . .
T e+ikx + . . .

u− = T e−ikx + . . . x → −∞
e−ikx + R− e+ikx + . . . x → +∞

R±, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Introduction 2/3
▶ We have the relations of conservation of energy |R±|2 + |T |2 = 1.

- Without obstacle, u+ = eikx so that (R+, T ) = (0, 1).

- With an obstacle, in general (R+, T ) ̸= (0, 1).

Goal of the talk

We wish to slightly perturb the walls of the guide to obtain R± = 0, T = 1
in the new geometry (as if there were no obstacle) ⇒ cloaking at “infinity”.
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Introduction 3/3

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.

Remark 1: Different from the usual cloaking picture
(Pendry et al. 06, Leonhardt 06, Greenleaf et al. 09).
→ Less ambitious but doable without fancy materials
(and relevant in practice).

Remark 2: Different from the perturbative techniques we have used in the
past based on variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0

Here the (big) obstacle is given, we want to compensate its scattering.
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Outline of the talk

1 Asymptotic analysis in presence of thin resonators

2 Almost zero reflection

3 Cloaking

4 Mode converter
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Setting

Main ingredient of our approach: outer resonators of width ε ≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x → −∞

e−ikx + Rε
− e+ikx + . . . x → +∞

In general, the thin ligament has only a weak influence on the scattering
coefficients: Rε

± ≈ R±, T ε ≈ T . But not always ...
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Numerical experiment

▶ We vary the length of the ligament:
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Numerical experiment

▶ For one particular length of the ligament, we get a standing mode (zero
transmission):
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Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of uε

+, Rε
+, T ε as ε → 0.

ε

ℓ

A

Ωε

(Pε) ∆uε
+ + k2uε

+ = 0 in Ωε,
∂nuε

+ = 0 on ∂Ωε

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

▶ To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18,...).
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Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).
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Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres . Then we find v−1 = 0 and when ε → 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − ℓ) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .

T ε = 1 + . . .
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Asymptotic analysis – Resonant case
▶ Now assume that ℓ = ℓres . Then we find v−1(y) = a sin(k(y − 1)) for
some a to determine.

▶ Inner expansion. Set ξ = ε−1(x − A) (stretched coordinates). Since

(∆x + k2)uε
+(ε−1(x − A)) = ε−2∆ξuε(ξ) + . . . ,

when ε → 0, we are led to study the problem

(⋆) −∆ξY = 0 in Ξ
∂νY = 0 on ∂Ξ.

O

Ξ−

Ξ+

Ξ

▶ Problem (⋆) admits a solution Y 1 (up to a constant) with the expansion

Y 1(ξ) =


ξy + CΞ + O(e−πξy ) as ξy → +∞, ξ ∈ Ξ+

1
π

ln
1

|ξ|
+ O

( 1
|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

▶ In a neighbourhood of A, we look for uε
+ of the form

uε
+(x) = CA Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε
+(x) = ε−1v−1(y) + v0(y) + · · · = 0 + (akξy + v0(1)) + . . . ,

we take CA = ak.
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Asymptotic analysis – Resonant case
▶ In the ansatz uε

+ = u0 + . . . in Ω, we deduce that we must take

u0 = u+ + akγ

where γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω.

▶ Then in the inner field expansion uε
+(x) = ak Y 1(ξ) + cA + . . . , this sets

cA = u+(A) + ak(Γ + π−1 ln |ε|).

▶ Matching the constant behaviour in the resonator, we obtain

v0(1) = u+(A) + ak(Γ + π−1 ln |ε| + CΞ).

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ

and ends the calculus of the first terms.
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Asymptotic analysis – Resonant case

▶ Finally for ℓ = ℓres , when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

ak = −
u+(A)

Γ + π−1 ln |ε| + CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case
▶ Similarly for ℓ = ℓres + εη with η ∈ R fixed, by modifying only the last
step with the compatibility relation, when ε → 0, we obtain

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

a(η)k = −
u+(A)

Γ + π−1 ln |ε| + CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Asymptotic analysis – Resonant case
▶ Below, for several η ∈ R, we display the paths

{(ε, ℓres + ε(η − π−1| ln ε|)), ε > 0} ⊂ R2.

ε

ℓ

ℓres

ε0

ε

ℓ

A

Ωε

According to η, the limit of the scattering coefficients along
the path as ε → 0+ is different.

▶ For a fixed small ε0, the scattering coefficients have a rapid variation for
ℓ varying in a neighbourhood of the resonance length.
→ This is exactly what we observed in the numerics.
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1 Asymptotic analysis in presence of thin resonators

2 Almost zero reflection

Varying the length of the ligament around the reso-
nant lengths, we can get a rapid and large variation
of the scattering coefficients.
→ How to use that to get zero reflection ?

3 Cloaking

4 Mode converter
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Almost zero reflection
▶ We have found Rε

+ = R0
+(η) + o(1), T ε = T 0(η) + o(1) with

R0
+(η) = R++

(2ik)−1 u+(A)2

Γ + π−1 ln |ε| + CΞ + η
, T 0(η) = T +

(2ik)−1 u+(A)u−(A)
Γ + π−1 ln |ε| + CΞ + η

.

▶ Results on Möbius transform (z 7→ az+b
cz+d )

guarantee that {R0
+(η) | η ∈ R}, {T 0(η) | η ∈ R}

are circles in C.
-1 -0.5 0.5 1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Asymptotically, when the length of the resonator is perturbed
around the resonance length, Rε

+, T ε run on circles.

▶ Interestingly, the features of the circles depend on the position A of the
ligament.
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Almost zero reflection

▶ Using the expansions of u±(A) far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.3).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when Rε
+ = 0, |T ε| = 1.

→ To cloak the object, it remains to compensate the phase shift!
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.01).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

Simulations realized with the Freefem++ library.

Conservation of energy guarantees that when Rε
+ = 0, |T ε| = 1.

→ To cloak the object, it remains to compensate the phase shift!
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1 Asymptotic analysis in presence of thin resonators

2 Almost zero reflection

3 Cloaking

4 Mode converter
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

Scheme of the method:

R1 T1 = 1 + R1

R2

T2

Step 1: with one ligament, we get
some R1, T1 as above.

Step 2: adding a second ligament,
we can get R2, T2 as above.
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

ℜe uε

ℜe eikx

▶ Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
▶ Now working in two steps, we can approximately cloak any object with
three resonators:
1) With one resonant ligament, first we get almost zero reflection;
2) With two additional resonant ligaments, we compensate the phase shift.

ℜe u+

ℜe uε
+

ℜe (uε
+ − eikx)
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

T1

T2

T0

Step 1: add one ligament so that the corresponding transmission circle,
which passes through zero and T0, crosses C (1/2, 1/2) \ {0}.

Step 2: fix the length of the first ligament so that T1 ∈ C (1/2, 1/2) \ {0}.
Step 3: add a second ligament and tune its position as well as its length to

get T2 = 1 (this is doable because of the value of T1).
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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2 Almost zero reflection

3 Cloaking
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Mode converter - goal
▶ We work at higher k (∈ (π; 2π)) so that two modes can propagate:

w±
1 (x, y) = e±iβ1xφ1(y), w±

2 (x, y) = e±iβ2xφ2(y).

▶ Now we have the two scattering solutions

uε
1(x, y) =

w+
1 (x + 1/2, y) +

∑2
j=1 rε

1jw−
j (x + 1/2, y) + . . . on the left∑2

j=1 tε
1jw+

j (x − 1/2, y) + . . . on the right

uε
2(x, y) =

w+
2 (x + 1/2, y) +

∑2
j=1 rε

2jw−
j (x + 1/2, y) + . . . on the left∑2

j=1 tε
2jw+

j (x − 1/2, y) + . . . on the right.

▶ We define the reflection and transmission matrices

Rε =
(

rε
11 rε

12
rε

21 rε
22

)
T ε =

(
tε
11 tε

12
tε
21 tε

22

)
.

Goal: find a geometry such that:
1) energy is completely transmitted

Rε ≈
( 0 0

0 0
)

T ε ≈
( 0 1

1 0
)

.
2) mode 1 is converted into mode 2
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Mode converter - geometry
▶ We decide to work in the following geometry with thin ligaments:

ℜe uε
1

ℜe uε
2

▶ This may seem paradoxical because in general in this Ω, energy is
mostly backscattered:

Rε ≈
( 1 0

0 1
)

T ε ≈
( 0 0

0 0
)

...
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Mode converter - exploiting symmetry
▶ We impose Ω to be symmetric wrt the (Oy) axis. Then we can show that

Rε =
Rε

N + Rε
D

2 T ε =
Rε

N − Rε
D

2

where Rε
N , Rε

D are the reflection matrices of the problems

(Pε
N )

∆uε
N + k2uε

N = 0 in ωε

∂νuε
N = 0 on ∂ωε \ Σε

∂νuε
N = 0 on Σε

(Pε
D)

∆uε
D + k2uε

D = 0 in ωε

∂νuε
D = 0 on ∂ωε \ Σε

uε
D = 0 on Σε

set in the half-waveguide ωε (here Σε := ∂ωε \ ∂Ωε):

ωε

Lε
−

Lε
+

A−

A+

Σε

Σε
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Mode converter - asymptotic analysis
▶ In the asympt. analysis of (Pε

N ), (Pε
D), we meet the 1D problems:

(P±
N ) ∂2

s v + k2v = 0 in (0; ℓ±)
v(0) = ∂sv(ℓ±) = 0 (P±

D) ∂2
s v + k2v = 0 in (0; ℓ±)

v(0) = v(ℓ±) = 0

We choose kℓ+ = mπ and kℓ− = (m + 1/2)π. In this situation:
- Lε

+ is resonant for the Neumann pb. but not for the Dirichlet one;
- Lε

− is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., Lε
+ acts at order ε0 while Lε

− acts at higher order.
For the Dirichlet pb., Lε

− acts at order ε0 while Lε
+ acts at higher order.

⇒ The action of the two ligaments decouple at order ε0.

▶ With the explicit representation provided by the asymptotic analysis (as
for cloaking), we can find positions and lengths of the ligaments such that

Rε
N =

( 0 1
1 0

)
+ o(1) Rε

D =
( 0 −1

−1 0

)
+ o(1) when ε → 0.
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Mode converter - results

▶ Thus tuning precisely the positions and lengths of the ligaments, we can
ensure absence of reflection and mode conversion:

t 7→ ℜe (uε
1e−iωt)

t 7→ ℜe (uε
2e−iωt)
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Conclusion

What we did

♠ We explained how to cloak any object in monomode regime and to
design mode converters using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit

dependence wrt to the geometry.

Possible extensions and open questions

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin
structures are resonant at one wavenumber otherwise act at order ε).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T = 1 exactly)? This question is also
related to robustness of the device.
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Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin
resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer
resonators. ZAMP, to appear, 2022.
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