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Linear Schrodinger equation: dispersion

1
10U + EAU =0, xeRY, Ujt—o = Up € S(RY).

.. : it 1 i —y|?
Explicit solution : u(t,x) = e'22ug(x) = W /]Rd e’ 2t up(y)dy.

Two consequences:
. . 1
o Dispersion: |[u(t)|| oo (ray S WHUOHU(R@/).

o Large time description: [lu(t) — A(t)uo| 2(ra) oo 0, where
— o0

1

A(E)uolx) = o (%) 5
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Nonlinear Schrodinger equation: power nonlinearity

ForAeR, 2/d<o< ﬁ, consider:

1
i0ru + §Au = Nu[*u, xeRY, Ujp—o = Up € HY(RY).
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Nonlinear Schrodinger equation: power nonlinearity

ForAeR, 2/d<o< ﬁ, consider:

1
i0ru + §Au = Nu[*u, xeRY, Ujp—o = Up € HY(RY).

o For small data, global existence (u € L*°(R; H}(R?))), and
asymptotically linear behavior,

us € H'(RT),  [lu(t) — €22t pey — O.

@ If A > 0: same conclusion, no size restriction.

o If A < 0: finite time blow-up is possible,

l = 0.
Jim V()] = oo

Solitary waves (u(t,x) = e’V*¢(x)) are unstable. They are (orbitally)
stable when 0 < 0 < 2/d.
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Logarithmic nonlinear Schrodinger equation

1
iOsu + §Au =Aln (|u|2) u, U= = Uo.
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Logarithmic nonlinear Schrodinger equation

1
iOsu + §Au =Aln (|u|2) u, U= = Uo.

~~ Physical motivation: quantum optics, quantum gravity, BEC, ...
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Logarithmic nonlinear Schrodinger equation

1
iOsu + §Au =Aln (|u|2) u, U= = Uo.

~~ Physical motivation: quantum optics, quantum gravity, BEC, ...
~~ Formal conservations:

e Mass: M(u(t)) := ||u(t)
e Energy (Hamiltonian):

E(u(t)) = %HVU(t)H%Q(Rd) 4 /\/Rd lu(t, )P (Inu(t, )P — 1) dx.

||L2(Rd
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Logarithmic nonlinear Schrodinger equation

1
iOsu + §Au =Aln (|u|2) u, U= = Uo.

~~ Physical motivation: quantum optics, quantum gravity, BEC, ...
~~ Formal conservations:

e Mass: M(u(t)) := ||u(t)
e Energy (Hamiltonian):

E(u(t) = > [V u()Zoggey + A [ u(t, X2 (Inu(t, )2 — 1) dx
2 Rd

Many unusual features, due to the singularity of the logarithm at 0.

||L2(Rd

For A < 0, no solution is dispersive (Th. Cazenave '83),

inf inf |lu(t)]|p(rey > 0.

teR 1<p<oo
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More strange properties

10ru + %Au = Aln (Juf?) u.

e For k > 0, ku solves
1
i0(ku) + 5 A(ku) = Aln (Ju?) ku = Mn (|ku|?) ku — X (In k?) ku.

Gauge transform: uy := (ku)e*™ "k solves the same equation as u(= u;).
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More strange properties

1
10ru + EAU = Aln (Juf?) u.
e For k > 0, ku solves

i0¢(ku) + %A(ku) = An (|uf?) ku = XIn (|ku[?) ku — X (In k?) ku.

Gauge transform: uy := (ku)e*™ "k solves the same equation as u(= u;).
~> A scaling factor does not change the dynamics.
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More strange properties

1
10ru + EAU = Aln (Juf?) u.
e For k > 0, ku solves
1
i0(ku) + 5 A(ku) = Aln (Ju?) ku = Mn (|ku|?) ku — X (In k?) ku.
Gauge transform: uy := (ku)e*™ "k solves the same equation as u(= u;).

~> A scaling factor does not change the dynamics.
o If u—g is Gaussian, then u(t,-) is Gaussian for all t € R: ODEs in time.
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More strange properties

10ru + %Au = Aln (Juf?) u.

e For k > 0, ku solves
1
i0(ku) + 5 A(ku) = Aln (Ju?) ku = Mn (|ku|?) ku — X (In k?) ku.

Gauge transform: uy := (ku)e*™ "k solves the same equation as u(= u;).
~> A scaling factor does not change the dynamics.

o If u—g is Gaussian, then u(t,-) is Gaussian for all t € R: ODEs in time.
e If A > 0: enhanced dispersion, universal dynamics (RC-I. Gallagher '18).
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Gaussons

iOru + %Au = Aln (Juf?) u.

Let v € R: ¢ (x) = e~ 35 +9/2eMx?,
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Gaussons

1
iOru + EAU = Aln (Juf?) u.
Let v € R: ¢, (x) = e 23 19/2eMx* | Standing wave u(t, x) = ¢, (x)e™".

Theorem (Cazenave '83, Ardila '16)

Let d > 1 and A\ < 0. The Gausson is orbitally stable in the energy space
W: For any € > 0, there exists n > 0 such that if ugp € W satisfies
lluo — ¢u||lw < 7, then the solution u exists for all t € R, and

sup inf inf |lu(t) — ep,(- — < e.
up inf inf|u() — €6 (- ) |w

Crucial ingredient: variational characterization based on logarithmic
Sobolev inequality.
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Variational analysis

—%mp + v+ ApIn|g|* = 0.
Action: )
Su(u) = E(u) +vlulz: = SIIVullf + /\/ Ju? (In|ul* = 1) + vl|ullf.
Nehari functional: I,(u) = 25, (u) + 2A||ul|?..
Set of ground states:
Gy ={¢ € W\{0}|1(¢) =0,5.(¢) = D(v)},
where D(v) = inf{S,(u) |u € W\ {0}, I,(u) = 0}
= inf{=AllulZz | v € W\ {0}, I, (u) = 0}

Proposition (Ardila '16)

D(v) = —Ard/2(—20)"9/2ev/*d; G, = {e%¢,(-—y); 0 €R, y € RY}.
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Logarithmic Sobolev inequality

Let f € HY(RY), a > 0.

2 |f(X)’2 32/ 2 2
<< — .
Rd|f(x)| In ( ||f‘|iz dx < - Rd\Vﬂ d(1+Ina)||f]2

Moreover, there is equality iff f is, up to translation, a multiple of
e—TIxI?/(22%)

Remark
The left hand side is [5q |f|?In|f|?, not [pq |f|? [In]f]?.

Rémi Carles (CNRS & Univ Rennes) LogNLS with potential 8/20



Introducing a quadratic potential

1
i0pu + iAu = V(x)u+ An ([u?) u.

Theorem (Ardila-Cely-Squassina '20)
Let d > 1 and A < 0. Suppose that

2\ .. .
V(x) = %Mz, Kk > —2X > 0 (confining potential).

. . v+rd/
The (generalized) Gausson is ¢, (x) = e~ B e P2y e R,

Associated standing wave u(t,x) = ¢,(x)e™t, which is orbitally stable in
the energy space ¥ = H* N F(H): For any ¢ > 0, there exists 1 > 0 such
that if ug € X satisfies ||ug — ¢, ||s < n, then

sup inf |lu(t) — ¢, |x < e.
tGReER
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Space translation invariance is lost.

The scheme and ingredients of the proof are somehow similar.

Questions considered:
o What if A > 07?
@ What if V is anisotropic?
e What if V' is quadratic repulsive?
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Singular properties

1
iOpu + §Au = V(x)u+ An ([u?) u.
e The size invariance remains: if u is a solution, then so is (ku)e/ ! Ik,
for any k € C.
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Singular properties

1
iOpu + §Au = V(x)u+Aln (Juf?) u

e The size invariance remains: if u is a solution, then so is (ku)e/™ " IKI°,
for any k € C.

d
, and up(x) = H ugj(x;j), then
j=1 j=1

MQ

e Tensorization: if V(x) =

d

u(t,x) = H uj(t, x;), where each u; solves a one-dimensional equation.
j=1
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Singular properties

1
iOpu + §Au = V(x)u+Aln (Juf?) u

e The size invariance remains: if u is a solution, then so is (ku)e/™ " IKI°,
for any k € C.

d
, and up(x) = H ugj(x;j), then
j=1 j=1

MQ

e Tensorization: if V(x) =

d

u(t,x) = H uj(t, x;), where each u; solves a one-dimensional equation.
j=1
e When V is quadratic, an initial Gaussian propagates as a Gaussian.
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Singular properties

1
iOpu + §Au = V(x)u+Aln (Juf?) u

e The size invariance remains: if u is a solution, then so is (ku)e/™ " IKI°,
for any k € C.

d
, and up(x) = H ugj(x;j), then
j=1 j=1

MQ

e Tensorization: if V(x) =

d
u(t,x) = H uj(t, x;), where each u; solves a one-dimensional equation.
j=1
e When V is quadratic, an initial Gaussian propagates as a Gaussian.
Link with a linear phenomenon: for

1
i0ru + §Au = V(t,x)u, V(t,x)=(x,M(t)x), M e R,
an initial Gaussian propagates as a Gaussian.
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Singular properties

1
iOpu + §Au = V(x)u+Aln (Juf?) u

e The size invariance remains: if u is a solution, then so is (ku)e/™ " IKI°,
for any k € C.

d
, and up(x) = H ugj(x;j), then
j=1 j=1

MQ

e Tensorization: if V(x) =

d
u(t,x) = H uj(t, x;), where each u; solves a one-dimensional equation.
j=1
e When V is quadratic, an initial Gaussian propagates as a Gaussian.
Link with a linear phenomenon: for

1
i0ru + §Au = V(t,x)u, V(t,x)=(x,M(t)x), M e R,

an initial Gaussian propagates as a Gaussian.
In e~ (ReADX) — _ (x Re A(t)x). ..
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Case A > 0 (with Guillaume Ferriere)

Theorem (RC-G. Ferriere '21)
Let d > 1 and \ > 0. Suppose that

2\ - .
wMQ, k > 0 (confining potential).

V(x) = >

The (generalized) Gausson is ¢, (x) = e~ HR e *x?/2 ) ¢ R. Standing
wave u(t,x) = ¢,(x)e'™t, which is orbitally stable in the energy space: For

any € > 0, there exists ) > 0 such that if uy € X satisfies ||uy — ¢, ||z <7,
then

sup inf |lu(t) — e < €.
sup inf Ju(t) — "6z

12 /20
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Main ingredients of the proof

Variational analysis, somehow like Ardila. The logarithmic Sobolev
inequality is replaced by:

Lemma

Let f € F(HY(RY)) and a > 0:

2 |F()I” / 2 2 dice o T
_ < el Z
L, IFGoRn ( ) & <2 [ WPIFeoPas+ Sl n

There is equality if and only if |f(x)| = ce=®*/2 with ¢ = ||f||2(a/m)?/2.

Remark (Anisotropic harmonic potential)

Theorem and Lemma readily adapted to the case

d
V(x) = Z %xﬁ, kj > 0. False if at least one x; = 0 (wait and
j=1

see).
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Proof of the lemma

For a > 0, consider the normalized Gaussian

va(x) = (i)d/z e~ /]Rd va(x)dx = 1.

s

Csiszar-Kullback inequality: u, v probability densities,

s iy <2 [ o (40 a

Consider pu(x) = |f(x)|?/||f||2, and v = v,: use the positivity of the
relative entropy, and expand.
Equality iff 4 = v,.
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Partial confinement: d > 2

1
i0pu + EAU = V(x)u+An ([u?) u.

We assume A\ > 0.
(x',x") € R% x R%, with di,d> > 1, dy + do = d, and
2
V(X’,X”) _ %|X/|2'

Tensorization: in the case of tensorized data, the solution in x” is
dispersive, hence no standing wave.
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Theorem (RC-G. Ferriere '21)
Let (x',x") € R% x R%, with dy,d> > 1, di + d» = d, and

AN/ _w72 /12
V(x,x)—2|x|, w > 0.

Suppose A > 0. Let ug € ¥\ {0}, and v(x") := e 'I*/2 Introduce

d2
p(t,y) = T(t)d2/ ‘u(tvxla)”'(t))'zdxl X 2 )
R ||UOHL2(]Rd)

where T solves a precise ODE, and satisfies T(t) ~ 2tV AInt as t — oo.

1 1
/ y | o(t,y)dy — y | (y)dy,
R\ Jy[2 TOURE |y

and
p(t,") — ~% weakly in L}(R%).

t—00
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Solitary waves & repulsive potential (with Chunmei Su)

2|X‘2

i0ru + Au— > u+)\u|n(|u|2), xeRY, w>0.

Theorem (RC-C. Su '21)

Let —\ > w > 0. There exist two (generalized) Gaussons,

dk.
k. (x) = e_Tice_kil)"zﬂ, where ki = —\+ /A2 — w2

Each stationary solution generates a continuous family of solitary waves,

g (6, X) = bpy (x)€”E, Gy (X)) = e B hp. (x), vER.

¢k_ and ¢y, are two positive solutions to the stationary equation

YV 2’F¢+A¢me>
2
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Linearizing around ¢y, for k = k_ or k4, leads to:

. 1 x|? dk
i0¢u + EAU = —wzyz‘u U Mk|x|?u = kK> u— —u.
. . . 1 2’X‘2 d .
Shifted harmonic oscillator, H, = —§A + ke — — > whose point

spectrum is kN: linear and spectral stability.

Definition

A standing wave u(t, x) = ¢(x)e’** solution is orbitally stable in the
energy space if for any € > 0, there exists n > 0 such that if yp € *
satisfies ||up — ¢||x < 7, then the solution u exists for all t € R, and

sup inf [lu(t) — e <e.
sup inf [Ju(t) —eéllz < e

Otherwise, the standing wave is said to be unstable.
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Nonlinear instability

Theorem (RC-C. Su '21)

Let — )\ > w > 0.

Ui,u(tax) = d)ki,u(x)eiytv ¢ki,u(X) = e_iéki (X)7 veR

Every such solitary wave is unstable.
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Nonlinear instability

Theorem (RC-C. Su '21)

Let =\ > w > 0.
Ui,u(tax) - d)ki,u(x)eiytv ¢ki,u(X) = e_iQSki (X)7 veR.

Every such solitary wave is unstable.

~> Unlike in the case of a power-nonlinearity, not by blow-up: all solutions
are global in time.
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Nonlinear instability

Theorem (RC-C. Su '21)

Let =\ > w > 0.
Ui,u(tax) - d)ki,u(x)eiytv ¢ki,u(X) = e_iQSki (X)7 veR.

Every such solitary wave is unstable.

~> Unlike in the case of a power-nonlinearity, not by blow-up: all solutions
are global in time.
~> Instability by small initial translations (in space or frequency).
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Nonlinear instability

Theorem (RC-C. Su '21)

Let =\ > w > 0.
Ui,u(tax) - d)ki,u(x)eiytv ¢ki,u(x) = e_iQﬁki (X)7 veR.

Every such solitary wave is unstable.

~> Unlike in the case of a power-nonlinearity, not by blow-up: all solutions
are global in time.

~> Instability by small initial translations (in space or frequency).

~» u_, is unstable even if we restrict the analysis to radial solutions:
consider centered Gaussians, and linearize the ODEs.
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On the notion of ground state

Most standard notions of ground state:
@ Minimizer of the action E 4+ vM.
@ Minimizer of the energy E for a given mass M.
e Positive solution of dE + vdM = 0.

~ In the case of homogeneous nonlinearities, the three notions coincide.
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On the notion of ground state

Most standard notions of ground state:
@ Minimizer of the action E 4+ vM.
@ Minimizer of the energy E for a given mass M.
e Positive solution of dE + vdM = 0.

~ In the case of homogeneous nonlinearities, the three notions coincide.
~> None of these notions is satisfied in the present case:

@ ¢k_ and ¢y, are such that dE = 0.
@ E unbounded from below for any given mass: space translations.

@ Introducing the action and the Nehari functional (like before),
D(v) =0 and G(v) = 0.
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