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A unique continuation problem

We look for (u, p) ∈ H1(Ω)d × L2
0(Ω) such that{
−ν∆u +∇p = 0 in Ω

∇ · u = 0 in Ω

and
u = uM in ωM

where ωM ⊂ Ω is an open domain.
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Stability?
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Ill-posedness of inverse problems

The solution of inverse problems generally does not depend continuously on the measurements

Inverse problems are ill-posed.

Continuity is restored in the presence of an a priori bound on the solution.

We talk about conditional stability properties.
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Conditional stability for the continuation problem

Let K ⊂⊂ Ω. There exists C > 0 and τ ∈ (0, 1) such that, for all (u, p) ∈ H1(Ω)d × H1(Ω)
solution of the homogeneous Stokes equation such that ‖u‖L2(Ω) ≤ M

‖u‖L2(K) ≤ CM1−τ‖u‖τ
L2(ωM)

.

[Lin, Uhlmann, Wang (2010)]
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Conditional stability for the continuation problem

Let K ⊂⊂ Ω. There exists C > 0 and τ ∈ (0, 1) such that, for all (u, p) ∈ H1(Ω)d × H1(Ω)
solution of the homogeneous Stokes equation such that ‖u‖L2(Ω) ≤ M

‖u‖L2(K) ≤ CM1−τ‖u‖τ
L2(ωM)

.

[Lin, Uhlmann, Wang (2010)]

Remarks

These inequalities are proven thanks to three-balls inequalities

‖u‖L2(B(R2)) ≤ C‖u‖τ
L2(B(R1))

‖u‖1−τ
L2(B(R3))

for R1 < R2 < R3.

[Alessandrini, Rondi, Rosset, Vessella (2009)]
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A classical strategy for the numerical resolution: Tikhonov regularization

We consider the functional:

Jα(v) =
1

2
‖u(v)− uM‖2

L2(ωM)

where u(v) satisfies −ν∆u +∇p = f in Ω
∇ · u = 0 in Ω

u = v on ∂Ω
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A classical strategy for the numerical resolution: Tikhonov regularization

We consider the functional:

Jα(v) =
1

2
‖u(v)− uM‖2

L2(ωM)
+ α2‖v‖2

∂Ω

where u(v) satisfies −ν∆u +∇p = f in Ω
∇ · u = 0 in Ω

u = v on ∂Ω

Choice of α ? choice of ‖ · ‖∂Ω ?

Add of an a priori.

Adaptative choice of α with respect to the noise or to the mesh size.

Morozov criteria: for uδM a noisy data, we choose α such that

‖u(vδα)− uδM‖L2(ωM) ' δ

where vδα minimizes Jα.

Balance between the discretization error and the regularization error.

[Burman, Hansbo, Larson (2016)]
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The discretize-then-regularize strategy

In what follows, we consider another strategy consisting of discretizing first then regularizing the
discrete problem by adding stabilisation terms.
[Burman (2013, 2014)]
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The discretize-then-regularize strategy

In what follows, we consider another strategy consisting of discretizing first then regularizing the
discrete problem by adding stabilisation terms.
[Burman (2013, 2014)]

Stabilisation methods

designed to sort out stability issues for discretized problems

formed by adding terms to the discrete Galerkin formulation

vanish quickly enough so that optimal error estimates can be obtained

originally developed for advection-diffusion equations, fluid equations

[Brooks, Hughes (1981)], [Hughes, Franca, Balestra (1986)], [Johnson,
Nävert, Pitkäranta (2016)]

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Variational formulation

[M.B., Burman, Fernandez, Voisembert (2021)]

We define:

V := [H1(Ω)]d , V0 := [H1
0 (Ω)]d , L0 := L2

0(Ω), and L := L2(Ω)

We look for (u, p) ∈ V × L0 such that

a(u, v)− b(p, v) + b(q, u) = (f , v)L2(Ω), ∀ (v , q) ∈ V0 × L

where

a(u, v) := ν

∫
Ω
∇u : ∇v and b(p, v) :=

∫
Ω
p∇ · v .

We define A : (V × L0)× (V0 × L) by

A[(u, p), (v , q)] := a(u, v)− b(p, v) + b(q, u)
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A mixed formulation of the minimization problem

We want to find (u, p) ∈ V × L0 that minimizes the functional

J(u) =
1

2

∫
ωM

|u − uM|2

under the constraint that

A[(u, p), (v , q)] = (f , v)L2(Ω), ∀ (v , q) ∈ (V0 × L)

We introduce the Lagrangian in (V × L0)× (V0 × L)

L[(u, p), (z, y)] = J(u) + A[(u, p), (z, y)]− (f , z)L2(Ω)

A critical point [(u, p), (z, y)] ∈ (V × L0)× (V0 × L) of L satisfies{
A[(u, p), (w , x)] = (f ,w)L2(Ω)

A[(v , q), (z, y)] + (u, v)L2(ωM) = (uM, v)L2(ωM)

for all [(v , q), (w , x)] ∈ (V × L0)× (V0 × L)

[Brezzi, Fortin (1991)], [Bourgeois, Recoquillay (2018)]

This problem is ill-posed!
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Minimization problem at the discrete level

We introduce Xh the standard H1-conforming finite element space of piecewise affine functions

and we define:
Vh = (Xh)d , Wh := Vh ∩ V0, Qh := Xh and Q0

h := Xh ∩ L0.

We modify the Lagrangian: for all (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh

L[(uh, ph), (zh, yh)] =
1

2

∫
ωM

|uh − uM|2 + A[(uh, ph), (zh, yh)]− (f , zh)L2(Ω)

+ 1
2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)].

We look for (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh such that{

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)

A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM) + S[(uh, ph), (vh, qh)] = (uM, vh)L2(ωM)

for all (vh, qh) ∈ Vh × Q0
h and (wh, xh) ∈Wh × Qh

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Minimization problem at the discrete level

We introduce Xh the standard H1-conforming finite element space of piecewise affine functions
and we define:

Vh = (Xh)d , Wh := Vh ∩ V0, Qh := Xh and Q0
h := Xh ∩ L0.

We modify the Lagrangian: for all (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh

L[(uh, ph), (zh, yh)] =
1

2

∫
ωM

|uh − uM|2 + A[(uh, ph), (zh, yh)]− (f , zh)L2(Ω)

+ 1
2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)].

We look for (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh such that{

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)

A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM) + S[(uh, ph), (vh, qh)] = (uM, vh)L2(ωM)

for all (vh, qh) ∈ Vh × Q0
h and (wh, xh) ∈Wh × Qh

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Minimization problem at the discrete level

We introduce Xh the standard H1-conforming finite element space of piecewise affine functions
and we define:

Vh = (Xh)d , Wh := Vh ∩ V0, Qh := Xh and Q0
h := Xh ∩ L0.

We modify the Lagrangian: for all (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh

L[(uh, ph), (zh, yh)] =
1

2

∫
ωM

|uh − uM|2 + A[(uh, ph), (zh, yh)]− (f , zh)L2(Ω)

+ 1
2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)].

We look for (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh such that{

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)

A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM) + S[(uh, ph), (vh, qh)] = (uM, vh)L2(ωM)

for all (vh, qh) ∈ Vh × Q0
h and (wh, xh) ∈Wh × Qh

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Minimization problem at the discrete level

We introduce Xh the standard H1-conforming finite element space of piecewise affine functions
and we define:

Vh = (Xh)d , Wh := Vh ∩ V0, Qh := Xh and Q0
h := Xh ∩ L0.

We modify the Lagrangian: for all (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh

L[(uh, ph), (zh, yh)] =
1

2

∫
ωM

|uh − uM|2 + A[(uh, ph), (zh, yh)]− (f , zh)L2(Ω)

+ 1
2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)].

We look for (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh such that{

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)

A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM) + S[(uh, ph), (vh, qh)] = (uM, vh)L2(ωM)

for all (vh, qh) ∈ Vh × Q0
h and (wh, xh) ∈Wh × Qh

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Minimization problem at the discrete level

We introduce Xh the standard H1-conforming finite element space of piecewise affine functions
and we define:

Vh = (Xh)d , Wh := Vh ∩ V0, Qh := Xh and Q0
h := Xh ∩ L0.

We modify the Lagrangian: for all (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh

L[(uh, ph), (zh, yh)] =
1

2

∫
ωM

|uh − uM|2 + A[(uh, ph), (zh, yh)]− (f , zh)L2(Ω)

+ 1
2
S[(uh, ph), (uh, ph)]− 1

2
S∗[(zh, yh), (zh, yh)].

We look for (uh, ph) ∈ Vh × Q0
h and (zh, yh) ∈Wh × Qh such that{

A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)

A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM) + S[(uh, ph), (vh, qh)] = (uM, vh)L2(ωM)

for all (vh, qh) ∈ Vh × Q0
h and (wh, xh) ∈Wh × Qh

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

Presentation of the data assimilation method
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S∗

They allow to get a well-posed problem at the discrete level.

They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z, y)], we have

S∗[(z, y), (w , x)] = 0 and S[(u, p), (v , q)] = 0
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the solution of the problem [(u, p), (z, y)], we have

S∗[(z, y), (w , x)] = 0 and S[(u, p), (v , q)] = 0

By this way {
A[(u, p), (w , x)]− S∗[(z, y), (w , x)] = (f ,w)L2(Ω)

A[(v , q), (z, y)] + (u, v)L2(ωM) + S[(u, p), (v , q)] = (uM, v)L2(ωM){
A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] = (f ,wh)L2(Ω)
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Properties of the stabilising terms

Choice of the stabilisation terms S and S∗

They allow to get a well-posed problem at the discrete level.

They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z, y)], we have

S∗[(z, y), (w , x)] = 0 and S[(u, p), (v , q)] = 0

At the discrete level, if the measurements are exact in the sense that uM = u|ωM , we have

(z, y) = (0, 0).

We will assume that (u, p) belongs to [H2(Ω)]d × H1(Ω).
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Design of the stabilising terms

S[(uh, ph), (vh, qh)] = γu
∑
F∈Fi

∫
F
hF J∇uhKJ∇vhK + γdiv

∫
Ω

(∇ · uh)(∇ · vh)
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Design of the stabilising terms

S[(uh, ph), (vh, qh)] = γu
∑
F∈Fi

∫
F
hF J∇uhKJ∇vhK + γdiv

∫
Ω

(∇ · uh)(∇ · vh)

and

S∗[(zh, yh), (wh, xh)] = γ∗u

∫
Ω
∇zh : ∇wh + γ∗p

∫
Ω
yhxh
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Well-posedness of the discrete problem

We set

A
(
[(uh, ph), (zh, yh)], [(vh, qh), (wh, xh)]

)
= A[(uh, ph), (wh, xh)]− S∗[(zh, yh), (wh, xh)] + A[(vh, qh), (zh, yh)] + (uh, vh)L2(ωM)

+S[(uh, ph), (vh, qh)]

Inf-sup condition?

We take [(vh, qh), (wh, xh)] = [(uh, ph), (−zh,−yh)]

A
(
[(uh, ph), (zh, yh)], [(uh, ph), (−zh,−yh)]

)
= S∗[(zh, yh), (zh, yh)] + (uh, uh)L2(ωM) + S[(uh, ph), (uh, ph)]

We have
S∗[(zh, yh), (zh, yh)] ≥ C(‖zh‖2

V0
+ ‖yh‖2

L)

and
(uh, uh)L2(ωM) + S[(uh, ph), (uh, ph)] ≥ Ch2(‖uh‖2

V + ‖ph‖2
L)
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Error estimate

Error estimate

Let f ∈ L2(Ω) be given. We assume that uM := u|ωM . We assume that the solution (u, p)
belongs to [H2(Ω)]d × H1(Ω). Then, for all K ⊂⊂ Ω, there exists τ ∈ (0, 1) such that

‖u − uh‖L2(K) ≤ Chτ (‖u‖[H2(Ω)]d + ‖p‖H1(Ω)) + h‖f ‖L2(Ω).

Error estimate in presence of noise

Let f ∈ L2(Ω) and δu ∈ L2(ωM) be given. We assume that uM := u|ωM + δu. We assume that
the solution (u, p) belongs to [H2(Ω)]d × H1(Ω). Then, for all K ⊂⊂ Ω, there exists τ ∈ (0, 1)
such that

‖u − uh‖L2(K) ≤ Chτ (‖u‖[H2(Ω)]d + ‖p‖H1(Ω) + h−1‖δu‖L2(ωM)) + h‖f ‖L2(Ω).
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Error estimate

Remarks

No error estimate for the pressure.

No global estimates.

Theoretical study

Error estimate for the pressure: for (u, p) ∈ H1(Ω)× L2(Ω) such that
‖u‖H1(Ω) + ‖p‖L2(Ω) ≤ M

‖u‖H1(K) + ‖p‖L2(K) ≤ CM1−τ
(
‖u‖H1(ωM ) + ‖p‖L2(ωM )

)τ
.

[M.B., Egloffe, Grandmont (2013)], [Badra, Caubet, Dardé (2016)]

Global estimates: for (u, p) ∈ H2(Ω)× H1(Ω) such that ‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ M

‖u‖L2(Ω) ≤ C
M

log

(
1 + M

‖u‖
L2(ωM )

)
[Badra, Caubet, Dardé (2016)]
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Error curves
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Figure: Error without noise
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Numerical reconstruction for the Stokes problem

Application to blood flow

A simplified framework
The fluid-structure interaction problem

A non-stationary problem

Blood flow in a stenotic blood vessel

Γi Γo

Γw

Γw

Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by unM the measurement of the velocity at time tn = n∆t in Ω.

Reconstruction of the relative pressure difference (RPD)

δp =
1

|Γi|

∫
Γi

p −
1

|Γo|

∫
Γo

p.

The boundary conditions are unknown in the inlet and outlet.

Direct estimation methods: PPE, STE, WERP

[Bertoglio, Nunez, Galarce, Nordsletten, Osses (2018)]

Resolution of the inverse problem directly on the nonstationary problem

[Bellassoued, Imanuvilov, Yamamoto (2016), M.B. (2016)]
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Application to blood flow

A simplified framework
The fluid-structure interaction problem

A direct method combined with a data assimilation method

At each time tn, we look for (un, pn) which minimizes∫
Ω
|un − unM|

2 dx

under the constraint that it satisfies the Oseen equations(unM · ∇)un − ν∆un +∇pn = −
un+1
M − unM

∆t
in Ω,

∇ · un = 0 in Ω.
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Numerical results

[M.B., Burman, Fernandez, Voisembert (2021)]

Velocity magnitude.

Left: reference, right: reconstruction with space-time subsampling and 10% of noise
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A simplified framework
The fluid-structure interaction problem

Taking into account the motion of the vessel

Work in progress with M. Abgalessi, M.A. Fernandez, D. Lombardi and M. Nechita

For realistic data, it is important to take into account the wall motion.

Moreover, the images give measurements on the velocity and the displacement of the
structure.

We do not have boundary conditions on the inlet and outlet.
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The fluid-structure interaction problem

The fluid-structure interaction model


ρf (∂tuf + uf · ∇uf)−∇ · σ(uf , p) = 0 in Ω(t),

∇ · uf = 0 in Ω(t),

σ(uf , p) = νε(uf)− pId

{
ρs∂tus + Led (d s) = (Πσext − Πσ(uf ,p))n̂ on Σ̂,

∂td s = us on Σ̂,{
uf ◦ (I + d s) = us on Σ̂,

uf = 0 on Γ̂1,

Remarks

Now, the pressure constant is fixed under the condition that the external pressure is known.
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The fluid-structure interaction problem

Luenberger observer for FSI

In the model, we add filters that involve the measurements.{
ρf (∂tuf + uf · ∇uf)−∇ · σ(uf , p) = 0 in Ω(t),

∇ · uf = 0 in Ω(t),{
ρs∂tus + Led (d s) = (Πσext − Πσ(uf ,p))n̂ on Σ̂,

∂td s = us on Σ̂,{
uf ◦ (I + d s) = us on Σ̂,

uf = 0 on Γ̂1

[Bertoglio, Chapelle, Fernandez, Gerbeau, Moireau (2013)]

Boundary conditions in the outlet and inlet? We set:

uf = ūf on Γ̂2 ∪ Γ̂4

Muriel Boulakia



Introduction
Numerical reconstruction for the Stokes problem

Application to blood flow

A simplified framework
The fluid-structure interaction problem

Luenberger observer for FSI

In the model, we add filters that involve the measurements.{
ρf (∂tuf + uf · ∇uf)−∇ · σ(uf , p) + γf (uf − uf,M) = 0 in Ω(t),

∇ · uf = 0 in Ω(t),{
ρs∂tus + Led (d s) + γvs (us − us,M) = (Πσext − Πσ(uf ,p))n̂ on Σ̂,

∂td s + γds (d s − d s,M) = us on Σ̂,{
uf ◦ (I + d s) = us on Σ̂,

uf = 0 on Γ̂1

[Bertoglio, Chapelle, Fernandez, Gerbeau, Moireau (2013)]

Boundary conditions in the outlet and inlet? We set:
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The continuation step

At each time tn, we look for (ūf
n, p̄n) which minimizes∫

Ωn−1
|ūf

n − un
f,M|

2 dx

under the constraint that it satisfies the Oseen equations
1

∆t
ūf

n + (un
f,M · ∇)ūf

n − ν∆ūf
n +∇p̄n =

1

∆t
un−1
f in Ωn−1,

∇ · ūf
n = 0 in Ωn−1,

ūf
n = 0 on Γ̂1,

ūf
n ◦ (I + d n−1

s ) = ūs
n on Σ̂,

ρsūs
n + ∆tLed (d n−1

s ) = ρsun−1
s + ∆t(Πσext − Πσn−1 )n̂ on Σ̂
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Numerical results: Stokes and Navier-Stokes equation

Stokes equation: recontruction of the pressure on the interface at time 0.1s.

Navier-Stokes equation: recontruction of the pressure and the displacement on the interface at time 0.1s.
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Work in progress

Work in progress

Comparison of the different ways to combine the steps

Numerical simulations in 3D

Theoretical study of the method in simplified cases

Thank you for your attention!
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