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Introduction

A unique continuation problem

We look for (u, p) € H* ()7 x L3(Q) such that

—vAu+Vp = 0 inQ
V.u = 0

and
u=uy in wym

where wyp C Q is an open domain.
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Introduction

A unique continuation problem

We look for (u, p) € H* ()7 x L3(Q) such that

—vAu+Vp = 0 inQ
V.u = 0

and
u=uy in wym

where wyp C Q is an open domain.

Unique continuation property:
uv =0 in wyr = (u, p) = (0,0) in HY(Q)Y x L2(Q).

[Fabre, Lebeau (1996)]
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Introduction

A unique continuation problem

We look for (u, p) € H* ()7 x L3(Q) such that

—vAu+Vp = 0 inQ
V.u = 0

and
u=uy in wym

where wyp C Q is an open domain.

Unique continuation property:

uv =0 in wyr = (u, p) = (0,0) in HY(Q)Y x L2(Q).
[Fabre, Lebeau (1996)]
Stability?

Muriel Boulakia



Introduction

Ill-posedness of inverse problems

@ The solution of inverse problems generally does not depend continuously on the measurements
@ Inverse problems are ill-posed.
o Continuity is restored in the presence of an a priori bound on the solution.

o We talk about conditional stability properties.
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Introduction

Conditional stability for the continuation problem

Let K CC Q. There exists C > 0 and 7 € (0,1) such that, for all (u, p) € HY(Q)? x HY(Q)
solution of the homogeneous Stokes equation such that ||ul[,2(q) < M

1—
lullizy < EMTlull 2

(wn)

[Lin, Uhlmann, Wang (2010)]
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Introduction

Conditional stability for the continuation problem

Let K CC Q. There exists C > 0 and 7 € (0,1) such that, for all (u, p) € HY(Q)? x HY(Q)
solution of the homogeneous Stokes equation such that ||ul[,2(q) < M

1—
lollizgry < CMM Tl

[Lin, Uhlmann, Wang (2010)]

Remarks

These inequalities are proven thanks to three-balls inequalities

HUHLZ(B(R2) < CHUHLz(B(Rl ||“|| Rs)) for R < R < Rs.

[Alessandrini, Rondi, Rosset, Vessella (2009)]
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Introduction

A classical strategy for the numerical resolution: Tikhonov regularization

We consider the functional:

1
Ja(v) = 5 [Ju(v) - untl 72 )

where u(v) satisfies

—vAu+Vp = f inQ
Veu = 0 inQ
u = v ondQ
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Introduction

A classical strategy for the numerical resolution: Tikhonov regularization

We consider the functional:
1
Ja(v) = Sllu(v) = untliFagyyy + @IVl

where u(v) satisfies

—vAu+Vp = f inQ
Veu = 0 inQ
u = v ondQ
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Introduction

A classical strategy for the numerical resolution: Tikhonov regularization

We consider the functional:
1
Ja(v) = Sllu(v) = untliFagyyy + @IVl

where u(v) satisfies

—vAu+Vp = f inQ
Veu = 0 inQ
u = v ondQ
Choice of a ? choice of || - ||aq ?

@ Add of an a priori.
o Adaptative choice of o with respect to the noise or to the mesh size.
e Morozov criteria: for uﬁ,[ a noisy data, we choose « such that
H“(Vg) - UIOVIHLZ(WIVI) ~4
where vi minimizes J,.
o Balance between the discretization error and the regularization error.
[Burman, Hansbo, Larson (2016)]
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

The discretize-then-regularize strategy

In what follows, we consider another strategy consisting of discretizing first then regularizing the
discrete problem by adding stabilisation terms.
[Burman (2013, 2014)]
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Presentation of the data assimilation method
Theoretical and numerical results

Numerical reconstruction for the Stokes problem

The discretize-then-regularize strategy

In what follows, we consider another strategy consisting of discretizing first then regularizing the
discrete problem by adding stabilisation terms.
[Burman (2013, 2014)]

Stabilisation methods

o designed to sort out stability issues for discretized problems

o formed by adding terms to the discrete Galerkin formulation

@ vanish quickly enough so that optimal error estimates can be obtained

originally developed for advection-diffusion equations, fluid equations

[Brooks, Hughes (1981)], [Hughes, Franca, Balestra (1986)], [Johnson,
Navert, Pitkdranta (2016)]
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Variational formulation

[M.B., Burman, Fernandez, Voisembert (2021)]
We define:

V= [HYQ)Y, Vo:=[H}(D)Y, Lo:=1L3(Q), and L:=L3(Q)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Variational formulation

[M.B., Burman, Fernandez, Voisembert (2021)]
We define:

V= [HYQ)Y, Vo:=[H}(D)Y, Lo:=1L3(Q), and L:=L3(Q)
We look for (u, p) € V x Lg such that
a(u,v) = b(p,v) + b(q,u) = (f,v)2(q), V(v,q) € Vo xL

where

a(u,v) := I// Vu:Vv and b(p,v):= / pV - v.
Q Q
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Variational formulation

[M.B., Burman, Fernandez, Voisembert (2021)]
We define:

V= [HYQ)Y, Vo:=[H}(D)Y, Lo:=1L3(Q), and L:=L3(Q)
We look for (u, p) € V x Lg such that
a(u,v) = b(p,v) + b(q,u) = (f,v)2(q), V(v,q) € Vo xL

where

a(u,v) := I// Vu:Vv and b(p,v):= / pV - v.
Q Q
We define A: (V x Lg) x (Vo x L) by

A[(U, P), (V7 q)] = a(uv V) - b(p» V) + b(qv U)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

A mixed formulation of the minimization problem

We want to find (u, p) € V X Lg that minimizes the functional

1
S =5 [ Ju
2 “M

under the constraint that

Al(u,p). (v, )] = (F. V)2, ¥ (v2a) € (Vo x L)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

A mixed formulation of the minimization problem

We want to find (u, p) € V X Lg that minimizes the functional

1
S =5 [ Ju
2 “M

under the constraint that
Al(u, p), (v, @)l = (£, v)12(0), Vv, q) € (Vo x L)
We introduce the Lagrangian in (V x Lg) x (Vo X L)

'C[(uv P)7 (Z,y)] = J(u) + A[(u,p), (z’}/)] - (f7 Z)LZ(Q)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

A mixed formulation of the minimization problem

We want to find (u, p) € V X Lg that minimizes the functional

1
S =5 [ Ju
2 “M

under the constraint that
Al(u, p), (v, @)l = (£, V) 120), VY (v,q) € (Vo x L)
We introduce the Lagrangian in (V x Lg) x (Vo X L)
L[(u, p), (z,¥)] = J(u) + Al(u, p), (2, ¥)] = (f, 2),2(q)
A critical point [(u, p), (z,y)] € (V x Lo) x (Vo x L) of £ satisfies
Al(y, p), (w, x)] = (f, w)i2(q)
{A[(Vvq)>(zvy)] F (V)2 = (M, V) 12(0y)

for all [(v,q), (w,x)] € (V x Lg) x (Vo x L)
[Brezzi, Fortin (1991)], [Bourgeois, Recoquillay (2018)]

Muriel Boulakia



Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

A mixed formulation of the minimization problem

We want to find (u, p) € V X Lg that minimizes the functional

1
S =5 [ Ju
2 “M

under the constraint that

Al(u, p), (v, @)l = (£, V) 120), VY (v,q) € (Vo x L)
We introduce the Lagrangian in (V x Lg) x (Vo X L)

L[(u, p), (z,¥)] = J(u) + Al(u, p), (2, ¥)] = (f, 2),2(q)
A critical point [(u, p), (z,y)] € (V x Lo) x (Vo x L) of £ satisfies
Al(y, p), (w, x)] = (f, w)i2(q)

{A[(Vvq)»(zv}’)] H (V) 2@y = (UM V) 20y
for all [(v, q), (w, x)] € (V x Lo) x (Vo x L)
[Brezzi, Fortin (1991)], [Bourgeois, Recoquillay (2018)]

This problem is ill-posed!
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Minimization problem at the discrete level

We introduce X}, the standard H-conforming finite element space of piecewise affine functions
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Minimization problem at the discrete level

We introduce X}, the standard H-conforming finite element space of piecewise affine functions
and we define:
Vi = (Xp)?, W=V, N Vo, Qyi= X, and QY := X, N Lo.
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Minimization problem at the discrete level

We introduce X}, the standard H-conforming finite element space of piecewise affine functions
and we define:
Vi = (Xp)?, W=V, N Vo, Qyi= X, and QY := X, N Lo.

We modify the Lagrangian: for all (up, pp) € Vi x QP and (z,yh) € Wi x Qp

1
L[(un: pr): (zn,y0)] = 5 / lun — unt|* + Al(un, pn), (28, yn)] = (F, 28)12(0)
WM
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Minimization problem at the discrete level

We introduce X}, the standard H-conforming finite element space of piecewise affine functions
and we define:
Vi = (Xp)?, W=V, N Vo, Qyi= X, and QY := X, N Lo.

We modify the Lagrangian: for all (up, pp) € Vi x QP and (z,yh) € Wi x Qp

1
L[(un: pr): (zn,y0)] = 5 / lun — unt|* + Al(un, pn), (28, yn)] = (F, 28)12(0)
WM

+ 2S[(un, pn), (un, Pr)] — 3S*[(zh, yi), (zn, yn)]-
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Minimization problem at the discrete level

We introduce X}, the standard H-conforming finite element space of piecewise affine functions
and we define:
Vi = (Xp)?, W=V, N Vo, Qyi= X, and QY := X, N Lo.

We modify the Lagrangian: for all (up, pp) € Vi x QP and (z,yh) € Wi x Qp

Ellwn ). Gyl =3 [ N Y ARCH BRGNS
+ 2S[(un, pn), (un, Pr)] — 3S*[(zh, yi), (zn, yn)]-
We look for (up, pp) € Vi X Q,? and (zp, yn) € Wh X Qp such that
Al(un, Pn), (W, xn)] — S*[(zn, yh), (Wh, xn)] = (f, wh)2()
{A[(Vh, qn)s (zn, yu)l + (s Vi) 2(wg) + S[(uns Pr), (Vs Gn)] = (a1, Vi) 120y )

for all (vh, qpn) € Vp X Q,? and (wp, xp) € Wy X Qp
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S*

@ They allow to get a well-posed problem at the discrete level.

@ They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z,y)], we have

S*[(z,y), (w,x)] =0 and S[(u, p),(v,q)] =0
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S*

@ They allow to get a well-posed problem at the discrete level.

@ They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z,y)], we have

S*[(z,y), (w,x)] =0 and S[(u, p),(v,q)] =0

By this way

{ Al(u, p), (w, x)] = (f, W)LQ(Q)

Al(v,q),(z,y)] + (uyV)L2(wM) (um, V)Lz(wM)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S*

@ They allow to get a well-posed problem at the discrete level.

@ They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z,y)], we have

S*[(z,y), (w,x)] =0 and S[(u, p),(v,q)] =0

By this way

(f,w)2(q)

= (UI\/I7 V)Lz(wM)

{ Al(u, p), (w, x)] = S"[(z,y), (w, x)
Al(v;q)

)]
(2] (V)2 + SI(0.p). (v, )]
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S*

@ They allow to get a well-posed problem at the discrete level.

@ They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z,y)], we have

S*[(z,y), (w,x)] =0 and S[(u, p),(v,q)] =0

By this way
{ Al(u, p), (w, x)] = S*[(2,y), (w, x)] = (f, w)i2(q)
Al(v, ), (2, )] + (U, V) 1200y + SI(wp), (Vi @)l = (unts V) 2y
{ Al(un, pn), (Why )] = S*[(2n, yn), (wh, xn)] = (f, wh)2(q)
Al(vh, an)s (2, yu)] + S[(un, Pr)s (Vhy Gn)] + (Un, Vi) 2(0y) = (UM VB)12(0p)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Properties of the stabilising terms

Choice of the stabilisation terms S and S*

@ They allow to get a well-posed problem at the discrete level.

@ They are consistent with the continuous formulation in the sense that, for
the solution of the problem [(u, p), (z,y)], we have

S*[(z,y), (w,x)] =0 and S[(u, p),(v,q)] =0

At the discrete level, if the measurements are exact in the sense that un = ulwy,, We have

(z,y) = (0,0).

We will assume that (u, p) belongs to [H?(2)]9 x HX(R).
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Design of the stabilising terms

S[(un, Ph)s (Vi @)l = vu Y /FhF[[VUhMVVhHJrWiv/Q(V'Uh)(V' vh)

FeF;
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Design of the stabilising terms

S[(un, Ph)s (Vi @)l = vu Y /FhF[[VUhMVVhHJrWiv/Q(V'Uh)(V' vh)

FeF;

and
S*[(Zhy}’h)v(wh,xh)]:'YZ/QVZh3VWh+7;LYhXh

Muriel Boulakia



Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Well-posedness of the discrete problem

We set
A([(un, pn), (28, yn)], [(vh, Gn)s (Why X))
= Al(un, pn), (Wh, xu)] = S*[(zn, ¥n), (Wh, x)] + Al(Vh, Gn), (2n, yb)] + (Uns Vi) 12(p)

+S[(un, pn), (vh, qn)]
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Well-posedness of the discrete problem

We set
A([(un, pn), (28, yn)], [(vh, Gn)s (Why X))
= Al(un, pn), (Wh, xu)] = S*[(zn, ¥n), (Wh, x)] + Al(Vh, Gn), (2n, yb)] + (Uns Vi) 12(p)

+S[(un, pn), (vh, qn)]

Inf-sup condition?
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Well-posedness of the discrete problem

We set
A([(un, pn), (28, yn)], [(vh, Gn)s (Why X))
= Al(un, Pn), (Wh, xn)] = S*[(zh: yh), (Wh, xn)] + Al(Vh, an), (2h, )] + (Uhs Vh) 12(0yy)
+S[(un, pn), (vh, gn)]
Inf-sup condition?
We take [(vi, qn), (wh, )] = [(un, Pn), (—2h, —yn)]
A([(un, pn); (21> yo))s [(un, Pr), (=28, —y1)])

= 5*[(zn, yn), (21, yn)] + (un, un) 2(opgy + SI(un, Ph), (un, pr)l
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . N
Theoretical and numerical results

Well-posedness of the discrete problem

We set
A([(un, pn), (28, yn)], [(vh, Gn)s (Why X))
= Al(un, Pn), (Wh, xn)] = S*[(zh: yh), (Wh, xn)] + Al(Vh, an), (2h, )] + (Uhs Vh) 12(0yy)
+S[(un, pn), (vh, gn)]
Inf-sup condition?
We take [(vh, an), (wh, xn)] = [(un, Pn), (—2h, —yn)]
A([(un, pn); (21> yo))s [(un, Pr), (=28, —y1)])
= 5"[(zn, yn), (2, yn)] + (un, un) 2(0ygy + SUun; ph), (un, pa)l

We have
S*[(zhs 1), 28y yn)] > Cl|znll3, + llyall7)

and
(Uns Un)12(wng) + S(Un, Ph); (tns )] = CH*([lunll, + llpall7)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . .
Theoretical and numerical results

Error estimate

Error estimate

Let f € L?(Q) be given. We assume that ups = uw,, - We assume that the solution (u, p)
belongs to [H?(Q2)]9 x HX(Q). Then, for all K CC Q, there exists 7 € (0,1) such that

llu = unllize) < ChT([[ullpzgaye + IPIlH1(0)) + Allfll2(9)
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . .
Theoretical and numerical results

Error estimate

Error estimate

Let f € L?(Q) be given. We assume that ups = uw,, - We assume that the solution (u, p)
belongs to [H?(Q2)]9 x HX(Q). Then, for all K CC Q, there exists 7 € (0,1) such that

llu = unllizky < ChT(Ilullipzye + 11PN (9)) + Allfll2()

Error estimate in presence of noise

Let f € L2(Q2) and du € L?(wn) be given. We assume that upg := ulwy, + Su. We assume that
the solution (u, p) belongs to [H?(R)]¢ x H1(Q). Then, for all K CC Q, there exists 7 € (0, 1)
such that

e = unll 2y < O (lullyagaye + NP1y + B 180ll 2ygy) + BllFll 20y

Muriel Boulakia



Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . .
Theoretical and numerical results

Error estimate

@ No error estimate for the pressure.

@ No global estimates.
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Presentation of the data assimilation method

Numerical reconstruction for the Stokes problem . .
Theoretical and numerical results

Error estimate

@ No error estimate for the pressure.

@ No global estimates.

Theoretical study

o Error estimate for the pressure: for (u, p) € H () x L?(Q2) such that
lull o) + llpll2@) < M

ol iy + P2y < CMAT (16ll1 gy + 1Pl 2y )

[M.B., Egloffe, Grandmont (2013)], [Badra, Caubet, Dardé (2016)]
o Global estimates: for (u, p) € H?(Q) x H'(Q) such that lull ) + 1Pl 1) < M

M

log (1 Tl )
v

Muriel Boulakia

lulliz) < €

[Badra, Caubet, Dardé (2016)]




Presentation of the data assimilation method
Theoretical and numerical results

Numerical reconstruction for the Stokes problem

Error curves

8
S 01f o1k
2
S
2 v
s
——®—— L2 velocity local ——®—— L2 velocity local
——O—— L2 velocity global ——O—— L2 velocity global
001 ——@—— Residual 001 ——@—— Residual
——&—— L2 pressure local ——&—— L2 pressure local
——A—— L2 pressure global ——A—— L2 pressure global
———- Slope 1 Slope 1
Slope 0.75 ———— Slope 075
L L L L
0.001 001 01 0.001 0.01 01

mesh-step (h)

Figure: Error without noise

mesh-step (h)

Figure: Error with 10% noise
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A simplified framework

Application to blood flow The fluid-structure interaction problem

A non-stationary problem

@ Blood flow in a stenotic blood vessel

ri o

N7
TN

o Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by uf; the measurement of the velocity at time t, = nAt in Q.
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A simplified framework

Application to blood flow The fluid-structure interaction problem

A non-stationary problem

@ Blood flow in a stenotic blood vessel

ri o

N7
TN

o Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by uf; the measurement of the velocity at time t, = nAt in Q.

@ Reconstruction of the relative pressure difference (RPD)

5 1 / 1
p=-— | p— p.
I [ ITol Jr,
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A simplified framework

Application to blood flow The fluid-structure interaction problem

A non-stationary problem

@ Blood flow in a stenotic blood vessel

ri o

N7
TN

o Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by uf; the measurement of the velocity at time t, = nAt in Q.

@ Reconstruction of the relative pressure difference (RPD)

5 1 / 1
p=-— | p— P
I [ ITol Jr,

@ The boundary conditions are unknown in the inlet and outlet.
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A simplified framework

Application to blood flow The fluid-structure interaction problem

A non-stationary problem

@ Blood flow in a stenotic blood vessel

ri o

N7
TN

o Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by uf; the measurement of the velocity at time t, = nAt in Q.

@ Reconstruction of the relative pressure difference (RPD)

5 1 / 1
p= p— P
I [ ITol Jr,

The boundary conditions are unknown in the inlet and outlet.

Direct estimation methods: PPE, STE, WERP
[Bertoglio, Nunez, Galarce, Nordsletten, Osses (2018)]
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A simplified framework

Application to blood flow The fluid-structure interaction problem

non-stationary problem

@ Blood flow in a stenotic blood vessel

ri o

N7
TN

o Measurements of the velocity on the whole domain (corresponding to 4D-MRI).

We denote by uf; the measurement of the velocity at time t, = nAt in Q.

@ Reconstruction of the relative pressure difference (RPD)

5 1 / 1
p= p— P
I [ ITol Jr,

@ The boundary conditions are unknown in the inlet and outlet.

@ Direct estimation methods: PPE, STE, WERP
[Bertoglio, Nunez, Galarce, Nordsletten, Osses (2018)]

@ Resolution of the inverse problem directly on the nonstationary problem
[Bellassoued, Imanuvilov, Yamamoto (2016), M.B. (2016)]
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A simplified framework

Application to blood flow The fluid-structure interaction problem

A direct method combined with a data assimilation method

At each time t,, we look for (u", p") which minimizes

/Q|u" — ufy|? dx

under the constraint that it satisfies the Oseen equations

1
n n_ n n__ _ u{\";r — UK/[ .
(upp - V)u" —vAU" +Vp" = — %y n Q,

V-u"=0 in

Muriel Boulakia



A simplified framework

Application to blood flow -structure interaction problem

Numerical results

[M.B., Burman, Fernandez, Voisembert (2021)]

3

Velocity magnitude.
Left: reference, right: reconstruction with space-time subsampling and 10% of noise

=" reae. 300210 pos e over 0 s 1| 0 100061002 10% ro (o ver 20 s

relative pressure (dynesicm2)

relative pressure (dynesicm2)

L L
o1 02 o3 01 o1 02
time (s) time (5)

L L L L L L
0

RPD (black line: reference, red dotted line: reconstruction)
Left: with 10% of noise, right: with space-time subsampling and 10% of noise
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A simplified framework

Application to blood flow The fluid-structure interaction problem

Taking into account the motion of the vessel

Work in progress with M. Abgalessi, M.A. Fernandez, D. Lombardi and M. Nechita

o For realistic data, it is important to take into account the wall motion.

@ Moreover, the images give measurements on the velocity and the displacement of the
structure.
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A simplified framework

Application to blood flow The fluid-structure interaction problem

Taking into account the motion of the vessel

Work in progress with M. Abgalessi, M.A. Fernandez, D. Lombardi and M. Nechita

o For realistic data, it is important to take into account the wall motion.

@ Moreover, the images give measurements on the velocity and the displacement of the

structure.
¢('7 t)
Py=% R
1y Q Iy  Ta)=Ts t) Iy(t) =1
\\ , /
B S~ - D) =1y
A1)
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A simplified framework

Application to blood flow The fluid-structure interaction problem

Taking into account the motion of the vessel

Work in progress with M. Abgalessi, M.A. Fernandez, D. Lombardi and M. Nechita

o For realistic data, it is important to take into account the wall motion.

@ Moreover, the images give measurements on the velocity and the displacement of the

structure.
¢('7 t)
Py=% R
1y Q Iy  Ta)=Ts t) Iy(t) =1
\\ , /
f‘ S~ - D) =Ty
A,t)

@ We do not have boundary conditions on the inlet and outlet.
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A simplified framework

Application to blood flow The fluid-structure interaction problem

The fluid-structure interaction model

p' (Oeus + ug - Vug) = V- o(ug,p) =0 in Q(1),
V-ug =0 inQ(t),
a(ug, p)

ve(ug) — pld
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Application to blood flow The fluid-structure interaction problem

The fluid-structure interaction model

p' (Oeus + ug - Vug) = V- o(ug,p) =0 in Q(1),
V-ug =0 inQ(t),
o(ug, p) = ve(ug) — pld

{psatus + £5(ds) = (Mogyy — Mo(us,p))A on £,

Otds = us  on i,
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A simplified framework

Application to blood flow The fluid-structure interaction problem

The fluid-structure interaction model

p' (Oeus + ug - Vug) = V- o(ug,p) =0 in Q(1),
V-ug =0 inQ(t),
o(ug, p) = ve(ug) — pld

{psatus + £4(ds) = (Mogwe — Mo(ug,p))A 0N 2,

Otds = us  on X,

{ufo(l—i-ds)_uS on ¥,

us =0 on fl,
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A simplified framework

Application to blood flow The fluid-structure interaction problem

The fluid-structure interaction model

p' (Oeus + ug - Vug) = V- o(ug,p) =0 in Q(1),
V-ug =0 inQ(t),
o(ug, p) = ve(ug) — pld
p°Orus + Efi(ds) = (Moexe — I_ItJ'(uf,p))ﬁ on X,
Otds = us  on X,

ugo (I +ds) = us on Pl
us =0 on fl,

Now, the pressure constant is fixed under the condition that the external pressure is known.
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A simplified framework

Application to blood flow The fluid-structure interaction problem

Luenberger observer for FSI

In the model, we add filters that involve the measurements.

of (Brus + ug - Vug) — V - o(ug, p) =0 inQ(t),
Voug=0 inQ(t),

psaqu + Lg(ds) = (nUext - HU(Uf,p))ﬁ on i,
Ords =—us ony¥,

{u1c<>(l+ds):uS on i,

UfZOOn fl
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A simplified framework
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Application to blood flow e fluid-structure interaction problem

Luenberger observer for FSI

In the model, we add filters that involve the measurements.

o' (Beus + ug - Vug) — V- o(ug, p) + e (us — ue i) =0 in Q(2),
Vour=0 inQt),

p°0eus + LG(ds) + 7Y (us — ue 1) = (Noewy — No(ug,p))A o0 %,
{ deds + 74 (ds —dsy) =us on ¥,
uso (I +ds) = ug on i,
{ ug =0 on fl

Bertoglio, Chapelle, Fernandez, Gerbeau, Moireau (2013
g
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Luenberger observer for FSI

In the model, we add filters that involve the measurements.

o' (Beus + ug - Vug) — V- o(ug, p) + e (us — ue i) =0 in Q(2),
Vour=0 inQt),

™M>

p°0eus + LG(ds) + 7Y (us — ue 1) = (Noewy — No(ug,p))A o0 %,
{ drds +~9(ds — ds ) =us  on ¥,
uso (I +ds) = ug on i,
{ ug =0 on fl
[Bertoglio, Chapelle, Fernandez, Gerbeau, Moireau (2013)]

Boundary conditions in the outlet and inlet?
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Luenberger observer for FSI

In the model, we add filters that involve the measurements.

o' (Beus + ug - Vug) — V- o(ug, p) + e (us — ue i) =0 in Q(2),
Vour=0 inQt),

™M>

p°0eus + LG(ds) + 7Y (us — ue 1) = (Noewy — No(ug,p))A o0 %,
{ drds +~9(ds — ds ) =us  on ¥,
uso (I +ds) = ug on i,
{ ug =0 on fl
[Bertoglio, Chapelle, Fernandez, Gerbeau, Moireau (2013)]

Boundary conditions in the outlet and inlet? We set:

Uf:lffonrgur—4
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The continuation step

At each time t,, we look for (d;", p") which minimizes
= n __ ..n 2 d
| uf p|” dx
Qn—1
under the constraint that it satisfies the Oseen equations

1 1
— "+ (uf - V)" — vAG" + VB = Lt T Lt

—uf
At At

V-d"=0 in Q"%

" =0 on f1,

a;"o (I +d"71) = a" on ¥,

P + AL (d"Y) = pPul Tt 4+ At(Mo,, — Mono1)i on S
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A simplified framework
The fluid-structure interaction problem

Application to blood flow

Numerical results: Stokes and Navier-Stokes equation

0. interface, time = 0,01
. interface. fime = 001

s (T T SR T R S R S

Stokes equation: recontruction of the pressure on the interface at time 0.1s.

oo inferface, fime =001
inferfoce. fime = 0,01

recontruction of the pressure and the displacement on the interface at time 0.1s.

Navier-Stokes equation:
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Work in progress

Work in progress

o Comparison of the different ways to combine the steps
@ Numerical simulations in 3D

@ Theoretical study of the method in simplified cases

Muriel Boulakia



A simplified framework

Application to blood flow The fluid-structure interaction problem

Work in progress

Work in progress
o Comparison of the different ways to combine the steps
@ Numerical simulations in 3D

@ Theoretical study of the method in simplified cases

Thank you for your attention!

Muriel Boulakia
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